Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | preq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| preq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
| Assertion | preq12d | ⊢ ( 𝜑 → { 𝐴 , 𝐶 } = { 𝐵 , 𝐷 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | preq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
| 3 | preq12 | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → { 𝐴 , 𝐶 } = { 𝐵 , 𝐷 } ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → { 𝐴 , 𝐶 } = { 𝐵 , 𝐷 } ) |