Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | preq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
preq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
Assertion | preq12d | ⊢ ( 𝜑 → { 𝐴 , 𝐶 } = { 𝐵 , 𝐷 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | preq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
3 | preq12 | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → { 𝐴 , 𝐶 } = { 𝐵 , 𝐷 } ) | |
4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → { 𝐴 , 𝐶 } = { 𝐵 , 𝐷 } ) |