Metamath Proof Explorer


Theorem preq12d

Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012)

Ref Expression
Hypotheses preq1d.1 ( 𝜑𝐴 = 𝐵 )
preq12d.2 ( 𝜑𝐶 = 𝐷 )
Assertion preq12d ( 𝜑 → { 𝐴 , 𝐶 } = { 𝐵 , 𝐷 } )

Proof

Step Hyp Ref Expression
1 preq1d.1 ( 𝜑𝐴 = 𝐵 )
2 preq12d.2 ( 𝜑𝐶 = 𝐷 )
3 preq12 ( ( 𝐴 = 𝐵𝐶 = 𝐷 ) → { 𝐴 , 𝐶 } = { 𝐵 , 𝐷 } )
4 1 2 3 syl2anc ( 𝜑 → { 𝐴 , 𝐶 } = { 𝐵 , 𝐷 } )