Metamath Proof Explorer


Theorem preq12i

Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012)

Ref Expression
Hypotheses preq1i.1 𝐴 = 𝐵
preq12i.2 𝐶 = 𝐷
Assertion preq12i { 𝐴 , 𝐶 } = { 𝐵 , 𝐷 }

Proof

Step Hyp Ref Expression
1 preq1i.1 𝐴 = 𝐵
2 preq12i.2 𝐶 = 𝐷
3 preq12 ( ( 𝐴 = 𝐵𝐶 = 𝐷 ) → { 𝐴 , 𝐶 } = { 𝐵 , 𝐷 } )
4 1 2 3 mp2an { 𝐴 , 𝐶 } = { 𝐵 , 𝐷 }