Step |
Hyp |
Ref |
Expression |
1 |
|
3simpa |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) |
2 |
1
|
anim1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ) |
3 |
2
|
ancoms |
⊢ ( ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ) |
4 |
|
preq12bg |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
5 |
3 4
|
syl |
⊢ ( ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
6 |
5
|
ex |
⊢ ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) ) |
7 |
|
ianor |
⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ↔ ( ¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V ) ) |
8 |
|
prneprprc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ ¬ 𝐶 ∈ V ) → { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) |
9 |
8
|
ancoms |
⊢ ( ( ¬ 𝐶 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) |
10 |
|
eqneqall |
⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
11 |
9 10
|
syl5com |
⊢ ( ( ¬ 𝐶 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
12 |
|
prneprprc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ ¬ 𝐷 ∈ V ) → { 𝐴 , 𝐵 } ≠ { 𝐷 , 𝐶 } ) |
13 |
12
|
ancoms |
⊢ ( ( ¬ 𝐷 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → { 𝐴 , 𝐵 } ≠ { 𝐷 , 𝐶 } ) |
14 |
|
prcom |
⊢ { 𝐶 , 𝐷 } = { 𝐷 , 𝐶 } |
15 |
14
|
eqeq2i |
⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ { 𝐴 , 𝐵 } = { 𝐷 , 𝐶 } ) |
16 |
|
eqneqall |
⊢ ( { 𝐴 , 𝐵 } = { 𝐷 , 𝐶 } → ( { 𝐴 , 𝐵 } ≠ { 𝐷 , 𝐶 } → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
17 |
15 16
|
sylbi |
⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( { 𝐴 , 𝐵 } ≠ { 𝐷 , 𝐶 } → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
18 |
13 17
|
syl5com |
⊢ ( ( ¬ 𝐷 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
19 |
11 18
|
jaoian |
⊢ ( ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
20 |
|
preq12 |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) |
21 |
|
preq12 |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐷 , 𝐶 } ) |
22 |
|
prcom |
⊢ { 𝐷 , 𝐶 } = { 𝐶 , 𝐷 } |
23 |
21 22
|
eqtrdi |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) |
24 |
20 23
|
jaoi |
⊢ ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) |
25 |
19 24
|
impbid1 |
⊢ ( ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
26 |
25
|
ex |
⊢ ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) ) |
27 |
7 26
|
sylbi |
⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) ) |
28 |
6 27
|
pm2.61i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |