| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3simpa | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) ) | 
						
							| 2 | 1 | anim1i | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝐶  ∈  V  ∧  𝐷  ∈  V ) )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  ∧  ( 𝐶  ∈  V  ∧  𝐷  ∈  V ) ) ) | 
						
							| 3 | 2 | ancoms | ⊢ ( ( ( 𝐶  ∈  V  ∧  𝐷  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 ) )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  ∧  ( 𝐶  ∈  V  ∧  𝐷  ∈  V ) ) ) | 
						
							| 4 |  | preq12bg | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  ∧  ( 𝐶  ∈  V  ∧  𝐷  ∈  V ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  ↔  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( ( 𝐶  ∈  V  ∧  𝐷  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  ↔  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) ) | 
						
							| 6 | 5 | ex | ⊢ ( ( 𝐶  ∈  V  ∧  𝐷  ∈  V )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  ↔  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) ) ) | 
						
							| 7 |  | ianor | ⊢ ( ¬  ( 𝐶  ∈  V  ∧  𝐷  ∈  V )  ↔  ( ¬  𝐶  ∈  V  ∨  ¬  𝐷  ∈  V ) ) | 
						
							| 8 |  | prneprprc | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  ∧  ¬  𝐶  ∈  V )  →  { 𝐴 ,  𝐵 }  ≠  { 𝐶 ,  𝐷 } ) | 
						
							| 9 | 8 | ancoms | ⊢ ( ( ¬  𝐶  ∈  V  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 ) )  →  { 𝐴 ,  𝐵 }  ≠  { 𝐶 ,  𝐷 } ) | 
						
							| 10 |  | eqneqall | ⊢ ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  →  ( { 𝐴 ,  𝐵 }  ≠  { 𝐶 ,  𝐷 }  →  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) ) | 
						
							| 11 | 9 10 | syl5com | ⊢ ( ( ¬  𝐶  ∈  V  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  →  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) ) | 
						
							| 12 |  | prneprprc | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  ∧  ¬  𝐷  ∈  V )  →  { 𝐴 ,  𝐵 }  ≠  { 𝐷 ,  𝐶 } ) | 
						
							| 13 | 12 | ancoms | ⊢ ( ( ¬  𝐷  ∈  V  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 ) )  →  { 𝐴 ,  𝐵 }  ≠  { 𝐷 ,  𝐶 } ) | 
						
							| 14 |  | prcom | ⊢ { 𝐶 ,  𝐷 }  =  { 𝐷 ,  𝐶 } | 
						
							| 15 | 14 | eqeq2i | ⊢ ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  ↔  { 𝐴 ,  𝐵 }  =  { 𝐷 ,  𝐶 } ) | 
						
							| 16 |  | eqneqall | ⊢ ( { 𝐴 ,  𝐵 }  =  { 𝐷 ,  𝐶 }  →  ( { 𝐴 ,  𝐵 }  ≠  { 𝐷 ,  𝐶 }  →  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) ) | 
						
							| 17 | 15 16 | sylbi | ⊢ ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  →  ( { 𝐴 ,  𝐵 }  ≠  { 𝐷 ,  𝐶 }  →  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) ) | 
						
							| 18 | 13 17 | syl5com | ⊢ ( ( ¬  𝐷  ∈  V  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  →  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) ) | 
						
							| 19 | 11 18 | jaoian | ⊢ ( ( ( ¬  𝐶  ∈  V  ∨  ¬  𝐷  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  →  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) ) | 
						
							| 20 |  | preq12 | ⊢ ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  →  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 } ) | 
						
							| 21 |  | preq12 | ⊢ ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  { 𝐴 ,  𝐵 }  =  { 𝐷 ,  𝐶 } ) | 
						
							| 22 |  | prcom | ⊢ { 𝐷 ,  𝐶 }  =  { 𝐶 ,  𝐷 } | 
						
							| 23 | 21 22 | eqtrdi | ⊢ ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 } ) | 
						
							| 24 | 20 23 | jaoi | ⊢ ( ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) )  →  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 } ) | 
						
							| 25 | 19 24 | impbid1 | ⊢ ( ( ( ¬  𝐶  ∈  V  ∨  ¬  𝐷  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  ↔  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) ) | 
						
							| 26 | 25 | ex | ⊢ ( ( ¬  𝐶  ∈  V  ∨  ¬  𝐷  ∈  V )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  ↔  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) ) ) | 
						
							| 27 | 7 26 | sylbi | ⊢ ( ¬  ( 𝐶  ∈  V  ∧  𝐷  ∈  V )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  ↔  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) ) ) | 
						
							| 28 | 6 27 | pm2.61i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  ↔  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) ) |