| Step |
Hyp |
Ref |
Expression |
| 1 |
|
preq1b.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
preq1b.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 3 |
|
prid1g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐶 } ) |
| 4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 , 𝐶 } ) |
| 5 |
|
eleq2 |
⊢ ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } → ( 𝐴 ∈ { 𝐴 , 𝐶 } ↔ 𝐴 ∈ { 𝐵 , 𝐶 } ) ) |
| 6 |
4 5
|
syl5ibcom |
⊢ ( 𝜑 → ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } → 𝐴 ∈ { 𝐵 , 𝐶 } ) ) |
| 7 |
|
elprg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) |
| 8 |
1 7
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) |
| 9 |
6 8
|
sylibd |
⊢ ( 𝜑 → ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } → ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) |
| 10 |
9
|
imp |
⊢ ( ( 𝜑 ∧ { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ) → ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) |
| 11 |
|
prid1g |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
| 12 |
2 11
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
| 13 |
|
eleq2 |
⊢ ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } → ( 𝐵 ∈ { 𝐴 , 𝐶 } ↔ 𝐵 ∈ { 𝐵 , 𝐶 } ) ) |
| 14 |
12 13
|
syl5ibrcom |
⊢ ( 𝜑 → ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } → 𝐵 ∈ { 𝐴 , 𝐶 } ) ) |
| 15 |
|
elprg |
⊢ ( 𝐵 ∈ 𝑊 → ( 𝐵 ∈ { 𝐴 , 𝐶 } ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ) ) |
| 16 |
2 15
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∈ { 𝐴 , 𝐶 } ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ) ) |
| 17 |
14 16
|
sylibd |
⊢ ( 𝜑 → ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } → ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ) ) |
| 18 |
17
|
imp |
⊢ ( ( 𝜑 ∧ { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ) → ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ) |
| 19 |
|
eqcom |
⊢ ( 𝐴 = 𝐵 ↔ 𝐵 = 𝐴 ) |
| 20 |
|
eqeq2 |
⊢ ( 𝐴 = 𝐶 → ( 𝐵 = 𝐴 ↔ 𝐵 = 𝐶 ) ) |
| 21 |
10 18 19 20
|
oplem1 |
⊢ ( ( 𝜑 ∧ { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ) → 𝐴 = 𝐵 ) |
| 22 |
21
|
ex |
⊢ ( 𝜑 → ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } → 𝐴 = 𝐵 ) ) |
| 23 |
|
preq1 |
⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ) |
| 24 |
22 23
|
impbid1 |
⊢ ( 𝜑 → ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ↔ 𝐴 = 𝐵 ) ) |