Metamath Proof Explorer


Theorem preq1i

Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012)

Ref Expression
Hypothesis preq1i.1 𝐴 = 𝐵
Assertion preq1i { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 }

Proof

Step Hyp Ref Expression
1 preq1i.1 𝐴 = 𝐵
2 preq1 ( 𝐴 = 𝐵 → { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } )
3 1 2 ax-mp { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 }