Metamath Proof Explorer


Theorem preq2

Description: Equality theorem for unordered pairs. (Contributed by NM, 15-Jul-1993)

Ref Expression
Assertion preq2 ( 𝐴 = 𝐵 → { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } )

Proof

Step Hyp Ref Expression
1 preq1 ( 𝐴 = 𝐵 → { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } )
2 prcom { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 }
3 prcom { 𝐶 , 𝐵 } = { 𝐵 , 𝐶 }
4 1 2 3 3eqtr4g ( 𝐴 = 𝐵 → { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } )