Description: Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same first element iff the second elements are equal. (Contributed by AV, 18-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | preq1b.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| preq1b.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| Assertion | preq2b | ⊢ ( 𝜑 → ( { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } ↔ 𝐴 = 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | preq1b.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | preq1b.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 3 | prcom | ⊢ { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 } | |
| 4 | prcom | ⊢ { 𝐶 , 𝐵 } = { 𝐵 , 𝐶 } | |
| 5 | 3 4 | eqeq12i | ⊢ ( { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } ↔ { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ) | 
| 6 | 1 2 | preq1b | ⊢ ( 𝜑 → ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ↔ 𝐴 = 𝐵 ) ) | 
| 7 | 5 6 | bitrid | ⊢ ( 𝜑 → ( { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } ↔ 𝐴 = 𝐵 ) ) |