Metamath Proof Explorer


Theorem preq2i

Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012)

Ref Expression
Hypothesis preq1i.1 𝐴 = 𝐵
Assertion preq2i { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 }

Proof

Step Hyp Ref Expression
1 preq1i.1 𝐴 = 𝐵
2 preq2 ( 𝐴 = 𝐵 → { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } )
3 1 2 ax-mp { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 }