Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | preqr1.a | ⊢ 𝐴 ∈ V | |
preqr1.b | ⊢ 𝐵 ∈ V | ||
Assertion | preqr1 | ⊢ ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } → 𝐴 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preqr1.a | ⊢ 𝐴 ∈ V | |
2 | preqr1.b | ⊢ 𝐵 ∈ V | |
3 | id | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ V ) | |
4 | 2 | a1i | ⊢ ( 𝐴 ∈ V → 𝐵 ∈ V ) |
5 | 3 4 | preq1b | ⊢ ( 𝐴 ∈ V → ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ↔ 𝐴 = 𝐵 ) ) |
6 | 1 5 | ax-mp | ⊢ ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ↔ 𝐴 = 𝐵 ) |
7 | 6 | biimpi | ⊢ ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } → 𝐴 = 𝐵 ) |