Metamath Proof Explorer


Theorem preqr1

Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995)

Ref Expression
Hypotheses preqr1.a 𝐴 ∈ V
preqr1.b 𝐵 ∈ V
Assertion preqr1 ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 preqr1.a 𝐴 ∈ V
2 preqr1.b 𝐵 ∈ V
3 id ( 𝐴 ∈ V → 𝐴 ∈ V )
4 2 a1i ( 𝐴 ∈ V → 𝐵 ∈ V )
5 3 4 preq1b ( 𝐴 ∈ V → ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ↔ 𝐴 = 𝐵 ) )
6 1 5 ax-mp ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ↔ 𝐴 = 𝐵 )
7 6 biimpi ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } → 𝐴 = 𝐵 )