Metamath Proof Explorer


Theorem preqr1g

Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. Closed form of preqr1 . (Contributed by AV, 29-Jan-2021) (Revised by AV, 18-Sep-2021)

Ref Expression
Assertion preqr1g ( ( 𝐴𝑉𝐵𝑊 ) → ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } → 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴𝑉𝐵𝑊 ) → 𝐴𝑉 )
2 simpr ( ( 𝐴𝑉𝐵𝑊 ) → 𝐵𝑊 )
3 1 2 preq1b ( ( 𝐴𝑉𝐵𝑊 ) → ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ↔ 𝐴 = 𝐵 ) )
4 3 biimpd ( ( 𝐴𝑉𝐵𝑊 ) → ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } → 𝐴 = 𝐵 ) )