Metamath Proof Explorer


Theorem preqr2

Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 15-Jul-1993)

Ref Expression
Hypotheses preqr1.a 𝐴 ∈ V
preqr1.b 𝐵 ∈ V
Assertion preqr2 ( { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 preqr1.a 𝐴 ∈ V
2 preqr1.b 𝐵 ∈ V
3 prcom { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 }
4 prcom { 𝐶 , 𝐵 } = { 𝐵 , 𝐶 }
5 3 4 eqeq12i ( { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } ↔ { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } )
6 1 2 preqr1 ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } → 𝐴 = 𝐵 )
7 5 6 sylbi ( { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } → 𝐴 = 𝐵 )