Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 15-Jul-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | preqr1.a | ⊢ 𝐴 ∈ V | |
| preqr1.b | ⊢ 𝐵 ∈ V | ||
| Assertion | preqr2 | ⊢ ( { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preqr1.a | ⊢ 𝐴 ∈ V | |
| 2 | preqr1.b | ⊢ 𝐵 ∈ V | |
| 3 | prcom | ⊢ { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 } | |
| 4 | prcom | ⊢ { 𝐶 , 𝐵 } = { 𝐵 , 𝐶 } | |
| 5 | 3 4 | eqeq12i | ⊢ ( { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } ↔ { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ) |
| 6 | 1 2 | preqr1 | ⊢ ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } → 𝐴 = 𝐵 ) |
| 7 | 5 6 | sylbi | ⊢ ( { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } → 𝐴 = 𝐵 ) |