Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 15-Jul-1993)
Ref | Expression | ||
---|---|---|---|
Hypotheses | preqr1.a | ⊢ 𝐴 ∈ V | |
preqr1.b | ⊢ 𝐵 ∈ V | ||
Assertion | preqr2 | ⊢ ( { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } → 𝐴 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preqr1.a | ⊢ 𝐴 ∈ V | |
2 | preqr1.b | ⊢ 𝐵 ∈ V | |
3 | prcom | ⊢ { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 } | |
4 | prcom | ⊢ { 𝐶 , 𝐵 } = { 𝐵 , 𝐶 } | |
5 | 3 4 | eqeq12i | ⊢ ( { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } ↔ { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ) |
6 | 1 2 | preqr1 | ⊢ ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } → 𝐴 = 𝐵 ) |
7 | 5 6 | sylbi | ⊢ ( { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } → 𝐴 = 𝐵 ) |