Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008) (Revised by AV, 12-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | preqsn.1 | ⊢ 𝐴 ∈ V | |
preqsn.2 | ⊢ 𝐵 ∈ V | ||
Assertion | preqsn | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preqsn.1 | ⊢ 𝐴 ∈ V | |
2 | preqsn.2 | ⊢ 𝐵 ∈ V | |
3 | id | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ V ) | |
4 | 2 | a1i | ⊢ ( 𝐴 ∈ V → 𝐵 ∈ V ) |
5 | 3 4 | preqsnd | ⊢ ( 𝐴 ∈ V → ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
6 | 1 5 | ax-mp | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) |
7 | eqeq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐴 = 𝐵 ↔ 𝐴 = 𝐶 ) ) | |
8 | 7 | pm5.32ri | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) |
9 | 6 8 | bitr4i | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) ) |