Metamath Proof Explorer


Theorem preqsn

Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008) (Revised by AV, 12-Jun-2022)

Ref Expression
Hypotheses preqsn.1 𝐴 ∈ V
preqsn.2 𝐵 ∈ V
Assertion preqsn ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐵𝐵 = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 preqsn.1 𝐴 ∈ V
2 preqsn.2 𝐵 ∈ V
3 id ( 𝐴 ∈ V → 𝐴 ∈ V )
4 2 a1i ( 𝐴 ∈ V → 𝐵 ∈ V )
5 3 4 preqsnd ( 𝐴 ∈ V → ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐶𝐵 = 𝐶 ) ) )
6 1 5 ax-mp ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐶𝐵 = 𝐶 ) )
7 eqeq2 ( 𝐵 = 𝐶 → ( 𝐴 = 𝐵𝐴 = 𝐶 ) )
8 7 pm5.32ri ( ( 𝐴 = 𝐵𝐵 = 𝐶 ) ↔ ( 𝐴 = 𝐶𝐵 = 𝐶 ) )
9 6 8 bitr4i ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐵𝐵 = 𝐶 ) )