| Step | Hyp | Ref | Expression | 
						
							| 1 |  | preqsnd.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | preqsnd.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 3 | 1 | adantl | ⊢ ( ( 𝐶  ∈  V  ∧  𝜑 )  →  𝐴  ∈  𝑉 ) | 
						
							| 4 | 2 | adantl | ⊢ ( ( 𝐶  ∈  V  ∧  𝜑 )  →  𝐵  ∈  𝑊 ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝐶  ∈  V  ∧  𝜑 )  →  𝐶  ∈  V ) | 
						
							| 6 |  | dfsn2 | ⊢ { 𝐶 }  =  { 𝐶 ,  𝐶 } | 
						
							| 7 | 6 | eqeq2i | ⊢ ( { 𝐴 ,  𝐵 }  =  { 𝐶 }  ↔  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐶 } ) | 
						
							| 8 |  | preq12bg | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  ∧  ( 𝐶  ∈  V  ∧  𝐶  ∈  V ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐶 }  ↔  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 )  ∨  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 ) ) ) ) | 
						
							| 9 |  | oridm | ⊢ ( ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 )  ∨  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 ) )  ↔  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 ) ) | 
						
							| 10 | 8 9 | bitrdi | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  ∧  ( 𝐶  ∈  V  ∧  𝐶  ∈  V ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐶 }  ↔  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 ) ) ) | 
						
							| 11 | 7 10 | bitrid | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  ∧  ( 𝐶  ∈  V  ∧  𝐶  ∈  V ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 }  ↔  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 ) ) ) | 
						
							| 12 | 3 4 5 5 11 | syl22anc | ⊢ ( ( 𝐶  ∈  V  ∧  𝜑 )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 }  ↔  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 ) ) ) | 
						
							| 13 |  | snprc | ⊢ ( ¬  𝐶  ∈  V  ↔  { 𝐶 }  =  ∅ ) | 
						
							| 14 | 13 | biimpi | ⊢ ( ¬  𝐶  ∈  V  →  { 𝐶 }  =  ∅ ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ¬  𝐶  ∈  V  ∧  𝜑 )  →  { 𝐶 }  =  ∅ ) | 
						
							| 16 | 15 | eqeq2d | ⊢ ( ( ¬  𝐶  ∈  V  ∧  𝜑 )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 }  ↔  { 𝐴 ,  𝐵 }  =  ∅ ) ) | 
						
							| 17 |  | prnzg | ⊢ ( 𝐴  ∈  𝑉  →  { 𝐴 ,  𝐵 }  ≠  ∅ ) | 
						
							| 18 |  | eqneqall | ⊢ ( { 𝐴 ,  𝐵 }  =  ∅  →  ( { 𝐴 ,  𝐵 }  ≠  ∅  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 ) ) ) | 
						
							| 19 | 17 18 | syl5com | ⊢ ( 𝐴  ∈  𝑉  →  ( { 𝐴 ,  𝐵 }  =  ∅  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 ) ) ) | 
						
							| 20 | 1 19 | syl | ⊢ ( 𝜑  →  ( { 𝐴 ,  𝐵 }  =  ∅  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 ) ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ¬  𝐶  ∈  V  ∧  𝜑 )  →  ( { 𝐴 ,  𝐵 }  =  ∅  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 ) ) ) | 
						
							| 22 | 16 21 | sylbid | ⊢ ( ( ¬  𝐶  ∈  V  ∧  𝜑 )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 }  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 ) ) ) | 
						
							| 23 |  | eleq1 | ⊢ ( 𝐶  =  𝐴  →  ( 𝐶  ∈  V  ↔  𝐴  ∈  V ) ) | 
						
							| 24 | 23 | eqcoms | ⊢ ( 𝐴  =  𝐶  →  ( 𝐶  ∈  V  ↔  𝐴  ∈  V ) ) | 
						
							| 25 | 24 | notbid | ⊢ ( 𝐴  =  𝐶  →  ( ¬  𝐶  ∈  V  ↔  ¬  𝐴  ∈  V ) ) | 
						
							| 26 |  | pm2.24 | ⊢ ( 𝐴  ∈  V  →  ( ¬  𝐴  ∈  V  →  ( 𝐵  =  𝐶  →  { 𝐴 ,  𝐵 }  =  { 𝐶 } ) ) ) | 
						
							| 27 |  | elex | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  V ) | 
						
							| 28 | 26 27 | syl11 | ⊢ ( ¬  𝐴  ∈  V  →  ( 𝐴  ∈  𝑉  →  ( 𝐵  =  𝐶  →  { 𝐴 ,  𝐵 }  =  { 𝐶 } ) ) ) | 
						
							| 29 | 25 28 | biimtrdi | ⊢ ( 𝐴  =  𝐶  →  ( ¬  𝐶  ∈  V  →  ( 𝐴  ∈  𝑉  →  ( 𝐵  =  𝐶  →  { 𝐴 ,  𝐵 }  =  { 𝐶 } ) ) ) ) | 
						
							| 30 | 29 | com13 | ⊢ ( 𝐴  ∈  𝑉  →  ( ¬  𝐶  ∈  V  →  ( 𝐴  =  𝐶  →  ( 𝐵  =  𝐶  →  { 𝐴 ,  𝐵 }  =  { 𝐶 } ) ) ) ) | 
						
							| 31 | 1 30 | syl | ⊢ ( 𝜑  →  ( ¬  𝐶  ∈  V  →  ( 𝐴  =  𝐶  →  ( 𝐵  =  𝐶  →  { 𝐴 ,  𝐵 }  =  { 𝐶 } ) ) ) ) | 
						
							| 32 | 31 | impcom | ⊢ ( ( ¬  𝐶  ∈  V  ∧  𝜑 )  →  ( 𝐴  =  𝐶  →  ( 𝐵  =  𝐶  →  { 𝐴 ,  𝐵 }  =  { 𝐶 } ) ) ) | 
						
							| 33 | 32 | impd | ⊢ ( ( ¬  𝐶  ∈  V  ∧  𝜑 )  →  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 )  →  { 𝐴 ,  𝐵 }  =  { 𝐶 } ) ) | 
						
							| 34 | 22 33 | impbid | ⊢ ( ( ¬  𝐶  ∈  V  ∧  𝜑 )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 }  ↔  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 ) ) ) | 
						
							| 35 | 12 34 | pm2.61ian | ⊢ ( 𝜑  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 }  ↔  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 ) ) ) |