Step |
Hyp |
Ref |
Expression |
1 |
|
preq2 |
⊢ ( 𝑦 = 𝐵 → { 𝑥 , 𝑦 } = { 𝑥 , 𝐵 } ) |
2 |
1
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( { 𝑥 , 𝑦 } ∈ V ↔ { 𝑥 , 𝐵 } ∈ V ) ) |
3 |
|
zfpair2 |
⊢ { 𝑥 , 𝑦 } ∈ V |
4 |
2 3
|
vtoclg |
⊢ ( 𝐵 ∈ V → { 𝑥 , 𝐵 } ∈ V ) |
5 |
|
preq1 |
⊢ ( 𝑥 = 𝐴 → { 𝑥 , 𝐵 } = { 𝐴 , 𝐵 } ) |
6 |
5
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( { 𝑥 , 𝐵 } ∈ V ↔ { 𝐴 , 𝐵 } ∈ V ) ) |
7 |
4 6
|
syl5ib |
⊢ ( 𝑥 = 𝐴 → ( 𝐵 ∈ V → { 𝐴 , 𝐵 } ∈ V ) ) |
8 |
7
|
vtocleg |
⊢ ( 𝐴 ∈ V → ( 𝐵 ∈ V → { 𝐴 , 𝐵 } ∈ V ) ) |
9 |
|
prprc1 |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 , 𝐵 } = { 𝐵 } ) |
10 |
|
snex |
⊢ { 𝐵 } ∈ V |
11 |
9 10
|
eqeltrdi |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 , 𝐵 } ∈ V ) |
12 |
|
prprc2 |
⊢ ( ¬ 𝐵 ∈ V → { 𝐴 , 𝐵 } = { 𝐴 } ) |
13 |
|
snex |
⊢ { 𝐴 } ∈ V |
14 |
12 13
|
eqeltrdi |
⊢ ( ¬ 𝐵 ∈ V → { 𝐴 , 𝐵 } ∈ V ) |
15 |
8 11 14
|
pm2.61nii |
⊢ { 𝐴 , 𝐵 } ∈ V |