| Step |
Hyp |
Ref |
Expression |
| 1 |
|
preq2 |
⊢ ( 𝑦 = 𝐵 → { 𝑥 , 𝑦 } = { 𝑥 , 𝐵 } ) |
| 2 |
1
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( { 𝑥 , 𝑦 } ∈ V ↔ { 𝑥 , 𝐵 } ∈ V ) ) |
| 3 |
|
zfpair2 |
⊢ { 𝑥 , 𝑦 } ∈ V |
| 4 |
2 3
|
vtoclg |
⊢ ( 𝐵 ∈ V → { 𝑥 , 𝐵 } ∈ V ) |
| 5 |
|
preq1 |
⊢ ( 𝑥 = 𝐴 → { 𝑥 , 𝐵 } = { 𝐴 , 𝐵 } ) |
| 6 |
5
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( { 𝑥 , 𝐵 } ∈ V ↔ { 𝐴 , 𝐵 } ∈ V ) ) |
| 7 |
4 6
|
imbitrid |
⊢ ( 𝑥 = 𝐴 → ( 𝐵 ∈ V → { 𝐴 , 𝐵 } ∈ V ) ) |
| 8 |
7
|
vtocleg |
⊢ ( 𝐴 ∈ V → ( 𝐵 ∈ V → { 𝐴 , 𝐵 } ∈ V ) ) |
| 9 |
|
prprc1 |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 , 𝐵 } = { 𝐵 } ) |
| 10 |
|
snex |
⊢ { 𝐵 } ∈ V |
| 11 |
9 10
|
eqeltrdi |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 , 𝐵 } ∈ V ) |
| 12 |
|
prprc2 |
⊢ ( ¬ 𝐵 ∈ V → { 𝐴 , 𝐵 } = { 𝐴 } ) |
| 13 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 14 |
12 13
|
eqeltrdi |
⊢ ( ¬ 𝐵 ∈ V → { 𝐴 , 𝐵 } ∈ V ) |
| 15 |
8 11 14
|
pm2.61nii |
⊢ { 𝐴 , 𝐵 } ∈ V |