| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prprc1 |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 , 𝐵 } = { 𝐵 } ) |
| 2 |
|
snfi |
⊢ { 𝐵 } ∈ Fin |
| 3 |
1 2
|
eqeltrdi |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 , 𝐵 } ∈ Fin ) |
| 4 |
|
prprc2 |
⊢ ( ¬ 𝐵 ∈ V → { 𝐴 , 𝐵 } = { 𝐴 } ) |
| 5 |
|
snfi |
⊢ { 𝐴 } ∈ Fin |
| 6 |
4 5
|
eqeltrdi |
⊢ ( ¬ 𝐵 ∈ V → { 𝐴 , 𝐵 } ∈ Fin ) |
| 7 |
|
2onn |
⊢ 2o ∈ ω |
| 8 |
|
simp1 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵 ) → 𝐴 ∈ V ) |
| 9 |
|
simp2 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵 ) → 𝐵 ∈ V ) |
| 10 |
|
simp3 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 = 𝐵 ) |
| 11 |
8 9 10
|
enpr2d |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o ) |
| 12 |
|
breq2 |
⊢ ( 𝑥 = 2o → ( { 𝐴 , 𝐵 } ≈ 𝑥 ↔ { 𝐴 , 𝐵 } ≈ 2o ) ) |
| 13 |
12
|
rspcev |
⊢ ( ( 2o ∈ ω ∧ { 𝐴 , 𝐵 } ≈ 2o ) → ∃ 𝑥 ∈ ω { 𝐴 , 𝐵 } ≈ 𝑥 ) |
| 14 |
7 11 13
|
sylancr |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵 ) → ∃ 𝑥 ∈ ω { 𝐴 , 𝐵 } ≈ 𝑥 ) |
| 15 |
|
isfi |
⊢ ( { 𝐴 , 𝐵 } ∈ Fin ↔ ∃ 𝑥 ∈ ω { 𝐴 , 𝐵 } ≈ 𝑥 ) |
| 16 |
14 15
|
sylibr |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵 ) → { 𝐴 , 𝐵 } ∈ Fin ) |
| 17 |
16
|
3expia |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ¬ 𝐴 = 𝐵 → { 𝐴 , 𝐵 } ∈ Fin ) ) |
| 18 |
|
dfsn2 |
⊢ { 𝐴 } = { 𝐴 , 𝐴 } |
| 19 |
|
preq2 |
⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐴 } = { 𝐴 , 𝐵 } ) |
| 20 |
18 19
|
eqtr2id |
⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐵 } = { 𝐴 } ) |
| 21 |
20 5
|
eqeltrdi |
⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐵 } ∈ Fin ) |
| 22 |
17 21
|
pm2.61d2 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → { 𝐴 , 𝐵 } ∈ Fin ) |
| 23 |
3 6 22
|
ecase |
⊢ { 𝐴 , 𝐵 } ∈ Fin |