Metamath Proof Explorer


Theorem prid1g

Description: An unordered pair contains its first member. Part of Theorem 7.6 of Quine p. 49. (Contributed by Stefan Allan, 8-Nov-2008)

Ref Expression
Assertion prid1g ( 𝐴𝑉𝐴 ∈ { 𝐴 , 𝐵 } )

Proof

Step Hyp Ref Expression
1 eqid 𝐴 = 𝐴
2 1 orci ( 𝐴 = 𝐴𝐴 = 𝐵 )
3 elprg ( 𝐴𝑉 → ( 𝐴 ∈ { 𝐴 , 𝐵 } ↔ ( 𝐴 = 𝐴𝐴 = 𝐵 ) ) )
4 2 3 mpbiri ( 𝐴𝑉𝐴 ∈ { 𝐴 , 𝐵 } )