Metamath Proof Explorer


Theorem prid2g

Description: An unordered pair contains its second member. Part of Theorem 7.6 of Quine p. 49. (Contributed by Stefan Allan, 8-Nov-2008)

Ref Expression
Assertion prid2g ( 𝐵𝑉𝐵 ∈ { 𝐴 , 𝐵 } )

Proof

Step Hyp Ref Expression
1 prid1g ( 𝐵𝑉𝐵 ∈ { 𝐵 , 𝐴 } )
2 prcom { 𝐵 , 𝐴 } = { 𝐴 , 𝐵 }
3 1 2 eleqtrdi ( 𝐵𝑉𝐵 ∈ { 𝐴 , 𝐵 } )