Step |
Hyp |
Ref |
Expression |
1 |
|
bi2.04 |
⊢ ( ( 𝑥 ≠ 1 → ( ( 𝐴 / 𝑥 ) ∈ ℕ → 𝑥 = 𝐴 ) ) ↔ ( ( 𝐴 / 𝑥 ) ∈ ℕ → ( 𝑥 ≠ 1 → 𝑥 = 𝐴 ) ) ) |
2 |
|
impexp |
⊢ ( ( ( 𝑥 ≠ 1 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) → 𝑥 = 𝐴 ) ↔ ( 𝑥 ≠ 1 → ( ( 𝐴 / 𝑥 ) ∈ ℕ → 𝑥 = 𝐴 ) ) ) |
3 |
|
neor |
⊢ ( ( 𝑥 = 1 ∨ 𝑥 = 𝐴 ) ↔ ( 𝑥 ≠ 1 → 𝑥 = 𝐴 ) ) |
4 |
3
|
imbi2i |
⊢ ( ( ( 𝐴 / 𝑥 ) ∈ ℕ → ( 𝑥 = 1 ∨ 𝑥 = 𝐴 ) ) ↔ ( ( 𝐴 / 𝑥 ) ∈ ℕ → ( 𝑥 ≠ 1 → 𝑥 = 𝐴 ) ) ) |
5 |
1 2 4
|
3bitr4ri |
⊢ ( ( ( 𝐴 / 𝑥 ) ∈ ℕ → ( 𝑥 = 1 ∨ 𝑥 = 𝐴 ) ) ↔ ( ( 𝑥 ≠ 1 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) → 𝑥 = 𝐴 ) ) |
6 |
|
nngt1ne1 |
⊢ ( 𝑥 ∈ ℕ → ( 1 < 𝑥 ↔ 𝑥 ≠ 1 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( 1 < 𝑥 ↔ 𝑥 ≠ 1 ) ) |
8 |
7
|
anbi1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( ( 1 < 𝑥 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ↔ ( 𝑥 ≠ 1 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ) ) |
9 |
|
nnz |
⊢ ( ( 𝐴 / 𝑥 ) ∈ ℕ → ( 𝐴 / 𝑥 ) ∈ ℤ ) |
10 |
|
nnre |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) |
11 |
|
gtndiv |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ ∧ 𝐴 < 𝑥 ) → ¬ ( 𝐴 / 𝑥 ) ∈ ℤ ) |
12 |
11
|
3expia |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 < 𝑥 → ¬ ( 𝐴 / 𝑥 ) ∈ ℤ ) ) |
13 |
10 12
|
sylan |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 < 𝑥 → ¬ ( 𝐴 / 𝑥 ) ∈ ℤ ) ) |
14 |
13
|
con2d |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( ( 𝐴 / 𝑥 ) ∈ ℤ → ¬ 𝐴 < 𝑥 ) ) |
15 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
16 |
|
lenlt |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥 ) ) |
17 |
10 15 16
|
syl2an |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( 𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥 ) ) |
18 |
14 17
|
sylibrd |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( ( 𝐴 / 𝑥 ) ∈ ℤ → 𝑥 ≤ 𝐴 ) ) |
19 |
18
|
ancoms |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( ( 𝐴 / 𝑥 ) ∈ ℤ → 𝑥 ≤ 𝐴 ) ) |
20 |
9 19
|
syl5 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( ( 𝐴 / 𝑥 ) ∈ ℕ → 𝑥 ≤ 𝐴 ) ) |
21 |
20
|
pm4.71rd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( ( 𝐴 / 𝑥 ) ∈ ℕ ↔ ( 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ) ) |
22 |
21
|
anbi2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( ( 1 < 𝑥 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ↔ ( 1 < 𝑥 ∧ ( 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ) ) ) |
23 |
|
3anass |
⊢ ( ( 1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ↔ ( 1 < 𝑥 ∧ ( 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ) ) |
24 |
22 23
|
bitr4di |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( ( 1 < 𝑥 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ↔ ( 1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ) ) |
25 |
8 24
|
bitr3d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( ( 𝑥 ≠ 1 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ↔ ( 1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ) ) |
26 |
25
|
imbi1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( ( ( 𝑥 ≠ 1 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) → 𝑥 = 𝐴 ) ↔ ( ( 1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) → 𝑥 = 𝐴 ) ) ) |
27 |
5 26
|
syl5bb |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( ( ( 𝐴 / 𝑥 ) ∈ ℕ → ( 𝑥 = 1 ∨ 𝑥 = 𝐴 ) ) ↔ ( ( 1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) → 𝑥 = 𝐴 ) ) ) |
28 |
27
|
ralbidva |
⊢ ( 𝐴 ∈ ℕ → ( ∀ 𝑥 ∈ ℕ ( ( 𝐴 / 𝑥 ) ∈ ℕ → ( 𝑥 = 1 ∨ 𝑥 = 𝐴 ) ) ↔ ∀ 𝑥 ∈ ℕ ( ( 1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) → 𝑥 = 𝐴 ) ) ) |