Step |
Hyp |
Ref |
Expression |
1 |
|
primefldgen1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
primefldgen1.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
3 |
|
primefldgen1.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
4 |
|
issdrg |
⊢ ( 𝑎 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑎 ) ∈ DivRing ) ) |
5 |
4
|
simp2bi |
⊢ ( 𝑎 ∈ ( SubDRing ‘ 𝑅 ) → 𝑎 ∈ ( SubRing ‘ 𝑅 ) ) |
6 |
2
|
subrg1cl |
⊢ ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) → 1 ∈ 𝑎 ) |
7 |
5 6
|
syl |
⊢ ( 𝑎 ∈ ( SubDRing ‘ 𝑅 ) → 1 ∈ 𝑎 ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝑅 ) ) → 1 ∈ 𝑎 ) |
9 |
8
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝑅 ) ) → { 1 } ⊆ 𝑎 ) |
10 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( SubDRing ‘ 𝑅 ) { 1 } ⊆ 𝑎 ) |
11 |
|
rabid2 |
⊢ ( ( SubDRing ‘ 𝑅 ) = { 𝑎 ∈ ( SubDRing ‘ 𝑅 ) ∣ { 1 } ⊆ 𝑎 } ↔ ∀ 𝑎 ∈ ( SubDRing ‘ 𝑅 ) { 1 } ⊆ 𝑎 ) |
12 |
10 11
|
sylibr |
⊢ ( 𝜑 → ( SubDRing ‘ 𝑅 ) = { 𝑎 ∈ ( SubDRing ‘ 𝑅 ) ∣ { 1 } ⊆ 𝑎 } ) |
13 |
12
|
inteqd |
⊢ ( 𝜑 → ∩ ( SubDRing ‘ 𝑅 ) = ∩ { 𝑎 ∈ ( SubDRing ‘ 𝑅 ) ∣ { 1 } ⊆ 𝑎 } ) |
14 |
3
|
drngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
15 |
1 2
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
17 |
16
|
snssd |
⊢ ( 𝜑 → { 1 } ⊆ 𝐵 ) |
18 |
1 3 17
|
fldgenval |
⊢ ( 𝜑 → ( 𝑅 fldGen { 1 } ) = ∩ { 𝑎 ∈ ( SubDRing ‘ 𝑅 ) ∣ { 1 } ⊆ 𝑎 } ) |
19 |
13 18
|
eqtr4d |
⊢ ( 𝜑 → ∩ ( SubDRing ‘ 𝑅 ) = ( 𝑅 fldGen { 1 } ) ) |