| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfz3 | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ( 𝑀 ... 𝑀 ) ) | 
						
							| 2 |  | fznuz | ⊢ ( 𝑀  ∈  ( 𝑀 ... 𝑀 )  →  ¬  𝑀  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑀  ∈  ℤ  →  ¬  𝑀  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 4 | 3 | 3mix1d | ⊢ ( 𝑀  ∈  ℤ  →  ( ¬  𝑀  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∨  ¬  𝑁  ∈  ℤ  ∨  ¬  𝑀  <  𝑁 ) ) | 
						
							| 5 |  | 3ianor | ⊢ ( ¬  ( 𝑀  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  𝑁  ∈  ℤ  ∧  𝑀  <  𝑁 )  ↔  ( ¬  𝑀  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∨  ¬  𝑁  ∈  ℤ  ∨  ¬  𝑀  <  𝑁 ) ) | 
						
							| 6 |  | elfzo2 | ⊢ ( 𝑀  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 )  ↔  ( 𝑀  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  𝑁  ∈  ℤ  ∧  𝑀  <  𝑁 ) ) | 
						
							| 7 | 5 6 | xchnxbir | ⊢ ( ¬  𝑀  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 )  ↔  ( ¬  𝑀  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∨  ¬  𝑁  ∈  ℤ  ∨  ¬  𝑀  <  𝑁 ) ) | 
						
							| 8 | 4 7 | sylibr | ⊢ ( 𝑀  ∈  ℤ  →  ¬  𝑀  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ) | 
						
							| 9 |  | incom | ⊢ ( { 𝑀 }  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  =  ( ( ( 𝑀  +  1 ) ..^ 𝑁 )  ∩  { 𝑀 } ) | 
						
							| 10 | 9 | eqeq1i | ⊢ ( ( { 𝑀 }  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  =  ∅  ↔  ( ( ( 𝑀  +  1 ) ..^ 𝑁 )  ∩  { 𝑀 } )  =  ∅ ) | 
						
							| 11 |  | disjsn | ⊢ ( ( ( ( 𝑀  +  1 ) ..^ 𝑁 )  ∩  { 𝑀 } )  =  ∅  ↔  ¬  𝑀  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ) | 
						
							| 12 | 10 11 | bitri | ⊢ ( ( { 𝑀 }  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  =  ∅  ↔  ¬  𝑀  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ) | 
						
							| 13 | 8 12 | sylibr | ⊢ ( 𝑀  ∈  ℤ  →  ( { 𝑀 }  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  =  ∅ ) | 
						
							| 14 |  | fzonel | ⊢ ¬  𝑁  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) | 
						
							| 15 | 14 | a1i | ⊢ ( 𝑀  ∈  ℤ  →  ¬  𝑁  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ) | 
						
							| 16 |  | incom | ⊢ ( { 𝑁 }  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  =  ( ( ( 𝑀  +  1 ) ..^ 𝑁 )  ∩  { 𝑁 } ) | 
						
							| 17 | 16 | eqeq1i | ⊢ ( ( { 𝑁 }  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  =  ∅  ↔  ( ( ( 𝑀  +  1 ) ..^ 𝑁 )  ∩  { 𝑁 } )  =  ∅ ) | 
						
							| 18 |  | disjsn | ⊢ ( ( ( ( 𝑀  +  1 ) ..^ 𝑁 )  ∩  { 𝑁 } )  =  ∅  ↔  ¬  𝑁  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ) | 
						
							| 19 | 17 18 | bitri | ⊢ ( ( { 𝑁 }  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  =  ∅  ↔  ¬  𝑁  ∈  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ) | 
						
							| 20 | 15 19 | sylibr | ⊢ ( 𝑀  ∈  ℤ  →  ( { 𝑁 }  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  =  ∅ ) | 
						
							| 21 |  | df-pr | ⊢ { 𝑀 ,  𝑁 }  =  ( { 𝑀 }  ∪  { 𝑁 } ) | 
						
							| 22 | 21 | ineq1i | ⊢ ( { 𝑀 ,  𝑁 }  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  =  ( ( { 𝑀 }  ∪  { 𝑁 } )  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) ) | 
						
							| 23 | 22 | eqeq1i | ⊢ ( ( { 𝑀 ,  𝑁 }  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  =  ∅  ↔  ( ( { 𝑀 }  ∪  { 𝑁 } )  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  =  ∅ ) | 
						
							| 24 |  | undisj1 | ⊢ ( ( ( { 𝑀 }  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  =  ∅  ∧  ( { 𝑁 }  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  =  ∅ )  ↔  ( ( { 𝑀 }  ∪  { 𝑁 } )  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  =  ∅ ) | 
						
							| 25 | 23 24 | bitr4i | ⊢ ( ( { 𝑀 ,  𝑁 }  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  =  ∅  ↔  ( ( { 𝑀 }  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  =  ∅  ∧  ( { 𝑁 }  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  =  ∅ ) ) | 
						
							| 26 | 13 20 25 | sylanbrc | ⊢ ( 𝑀  ∈  ℤ  →  ( { 𝑀 ,  𝑁 }  ∩  ( ( 𝑀  +  1 ) ..^ 𝑁 ) )  =  ∅ ) |