Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Mixed connectives
prlem1
Metamath Proof Explorer
Description: A specialized lemma for set theory (to derive the Axiom of Pairing).
(Contributed by NM , 18-Oct-1995) (Proof shortened by Andrew Salmon , 13-May-2011) (Proof shortened by Wolf Lammen , 5-Jan-2013)
Ref
Expression
Hypotheses
prlem1.1
⊢ ( 𝜑 → ( 𝜂 ↔ 𝜒 ) )
prlem1.2
⊢ ( 𝜓 → ¬ 𝜃 )
Assertion
prlem1
⊢ ( 𝜑 → ( 𝜓 → ( ( ( 𝜓 ∧ 𝜒 ) ∨ ( 𝜃 ∧ 𝜏 ) ) → 𝜂 ) ) )
Proof
Step
Hyp
Ref
Expression
1
prlem1.1
⊢ ( 𝜑 → ( 𝜂 ↔ 𝜒 ) )
2
prlem1.2
⊢ ( 𝜓 → ¬ 𝜃 )
3
1
biimprd
⊢ ( 𝜑 → ( 𝜒 → 𝜂 ) )
4
3
adantld
⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜒 ) → 𝜂 ) )
5
2
pm2.21d
⊢ ( 𝜓 → ( 𝜃 → 𝜂 ) )
6
5
adantrd
⊢ ( 𝜓 → ( ( 𝜃 ∧ 𝜏 ) → 𝜂 ) )
7
4 6
jaao
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝜓 ∧ 𝜒 ) ∨ ( 𝜃 ∧ 𝜏 ) ) → 𝜂 ) )
8
7
ex
⊢ ( 𝜑 → ( 𝜓 → ( ( ( 𝜓 ∧ 𝜒 ) ∨ ( 𝜃 ∧ 𝜏 ) ) → 𝜂 ) ) )