Metamath Proof Explorer


Theorem prlem1

Description: A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 18-Oct-1995) (Proof shortened by Andrew Salmon, 13-May-2011) (Proof shortened by Wolf Lammen, 5-Jan-2013)

Ref Expression
Hypotheses prlem1.1 ( 𝜑 → ( 𝜂𝜒 ) )
prlem1.2 ( 𝜓 → ¬ 𝜃 )
Assertion prlem1 ( 𝜑 → ( 𝜓 → ( ( ( 𝜓𝜒 ) ∨ ( 𝜃𝜏 ) ) → 𝜂 ) ) )

Proof

Step Hyp Ref Expression
1 prlem1.1 ( 𝜑 → ( 𝜂𝜒 ) )
2 prlem1.2 ( 𝜓 → ¬ 𝜃 )
3 1 biimprd ( 𝜑 → ( 𝜒𝜂 ) )
4 3 adantld ( 𝜑 → ( ( 𝜓𝜒 ) → 𝜂 ) )
5 2 pm2.21d ( 𝜓 → ( 𝜃𝜂 ) )
6 5 adantrd ( 𝜓 → ( ( 𝜃𝜏 ) → 𝜂 ) )
7 4 6 jaao ( ( 𝜑𝜓 ) → ( ( ( 𝜓𝜒 ) ∨ ( 𝜃𝜏 ) ) → 𝜂 ) )
8 7 ex ( 𝜑 → ( 𝜓 → ( ( ( 𝜓𝜒 ) ∨ ( 𝜃𝜏 ) ) → 𝜂 ) ) )