Step |
Hyp |
Ref |
Expression |
1 |
|
prlem934.1 |
⊢ 𝐵 ∈ V |
2 |
|
prn0 |
⊢ ( 𝐴 ∈ P → 𝐴 ≠ ∅ ) |
3 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) |
4 |
3
|
ex |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
5 |
2 4
|
syl |
⊢ ( 𝐴 ∈ P → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
6 |
|
prpssnq |
⊢ ( 𝐴 ∈ P → 𝐴 ⊊ Q ) |
7 |
6
|
pssssd |
⊢ ( 𝐴 ∈ P → 𝐴 ⊆ Q ) |
8 |
7
|
sseld |
⊢ ( 𝐴 ∈ P → ( ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → ( 𝑥 +Q 𝐵 ) ∈ Q ) ) |
9 |
|
addnqf |
⊢ +Q : ( Q × Q ) ⟶ Q |
10 |
9
|
fdmi |
⊢ dom +Q = ( Q × Q ) |
11 |
|
0nnq |
⊢ ¬ ∅ ∈ Q |
12 |
10 11
|
ndmovrcl |
⊢ ( ( 𝑥 +Q 𝐵 ) ∈ Q → ( 𝑥 ∈ Q ∧ 𝐵 ∈ Q ) ) |
13 |
12
|
simprd |
⊢ ( ( 𝑥 +Q 𝐵 ) ∈ Q → 𝐵 ∈ Q ) |
14 |
8 13
|
syl6com |
⊢ ( ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → ( 𝐴 ∈ P → 𝐵 ∈ Q ) ) |
15 |
14
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → ( 𝐴 ∈ P → 𝐵 ∈ Q ) ) |
16 |
15
|
com12 |
⊢ ( 𝐴 ∈ P → ( ∃ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → 𝐵 ∈ Q ) ) |
17 |
|
oveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝑥 +Q 𝑏 ) = ( 𝑥 +Q 𝐵 ) ) |
18 |
17
|
eleq1d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ↔ ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
19 |
18
|
ralbidv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
20 |
19
|
notbid |
⊢ ( 𝑏 = 𝐵 → ( ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
21 |
20
|
imbi2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ∈ P → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ↔ ( 𝐴 ∈ P → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) ) |
22 |
|
dfpss2 |
⊢ ( 𝐴 ⊊ Q ↔ ( 𝐴 ⊆ Q ∧ ¬ 𝐴 = Q ) ) |
23 |
6 22
|
sylib |
⊢ ( 𝐴 ∈ P → ( 𝐴 ⊆ Q ∧ ¬ 𝐴 = Q ) ) |
24 |
23
|
simprd |
⊢ ( 𝐴 ∈ P → ¬ 𝐴 = Q ) |
25 |
24
|
adantr |
⊢ ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ) → ¬ 𝐴 = Q ) |
26 |
7
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) → 𝐴 ⊆ Q ) |
27 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → 𝐴 ∈ P ) |
28 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐴 ) |
29 |
2 28
|
sylib |
⊢ ( 𝐴 ∈ P → ∃ 𝑦 𝑦 ∈ 𝐴 ) |
30 |
27 29
|
syl |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → ∃ 𝑦 𝑦 ∈ 𝐴 ) |
31 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) → 𝑤 ∈ Q ) |
32 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) → 𝑏 ∈ Q ) |
33 |
|
recclnq |
⊢ ( 𝑏 ∈ Q → ( *Q ‘ 𝑏 ) ∈ Q ) |
34 |
|
mulclnq |
⊢ ( ( 𝑤 ∈ Q ∧ ( *Q ‘ 𝑏 ) ∈ Q ) → ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) ∈ Q ) |
35 |
|
archnq |
⊢ ( ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) ∈ Q → ∃ 𝑧 ∈ N ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) |
36 |
34 35
|
syl |
⊢ ( ( 𝑤 ∈ Q ∧ ( *Q ‘ 𝑏 ) ∈ Q ) → ∃ 𝑧 ∈ N ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) |
37 |
33 36
|
sylan2 |
⊢ ( ( 𝑤 ∈ Q ∧ 𝑏 ∈ Q ) → ∃ 𝑧 ∈ N ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) |
38 |
31 32 37
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) → ∃ 𝑧 ∈ N ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) |
39 |
|
simpll2 |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑏 ∈ Q ) |
40 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑤 ∈ Q ) |
41 |
|
simprr |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) |
42 |
|
ltmnq |
⊢ ( 𝑏 ∈ Q → ( ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ↔ ( 𝑏 ·Q ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) ) <Q ( 𝑏 ·Q 〈 𝑧 , 1o 〉 ) ) ) |
43 |
|
vex |
⊢ 𝑏 ∈ V |
44 |
|
vex |
⊢ 𝑤 ∈ V |
45 |
|
fvex |
⊢ ( *Q ‘ 𝑏 ) ∈ V |
46 |
|
mulcomnq |
⊢ ( 𝑣 ·Q 𝑥 ) = ( 𝑥 ·Q 𝑣 ) |
47 |
|
mulassnq |
⊢ ( ( 𝑣 ·Q 𝑥 ) ·Q 𝑦 ) = ( 𝑣 ·Q ( 𝑥 ·Q 𝑦 ) ) |
48 |
43 44 45 46 47
|
caov12 |
⊢ ( 𝑏 ·Q ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) ) = ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) |
49 |
|
mulcomnq |
⊢ ( 𝑏 ·Q 〈 𝑧 , 1o 〉 ) = ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) |
50 |
48 49
|
breq12i |
⊢ ( ( 𝑏 ·Q ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) ) <Q ( 𝑏 ·Q 〈 𝑧 , 1o 〉 ) ↔ ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) |
51 |
42 50
|
bitrdi |
⊢ ( 𝑏 ∈ Q → ( ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ↔ ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝑏 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ↔ ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
53 |
|
recidnq |
⊢ ( 𝑏 ∈ Q → ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) = 1Q ) |
54 |
53
|
oveq2d |
⊢ ( 𝑏 ∈ Q → ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) = ( 𝑤 ·Q 1Q ) ) |
55 |
|
mulidnq |
⊢ ( 𝑤 ∈ Q → ( 𝑤 ·Q 1Q ) = 𝑤 ) |
56 |
54 55
|
sylan9eq |
⊢ ( ( 𝑏 ∈ Q ∧ 𝑤 ∈ Q ) → ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) = 𝑤 ) |
57 |
56
|
breq1d |
⊢ ( ( 𝑏 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ↔ 𝑤 <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
58 |
52 57
|
bitrd |
⊢ ( ( 𝑏 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ↔ 𝑤 <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
59 |
58
|
biimpa |
⊢ ( ( ( 𝑏 ∈ Q ∧ 𝑤 ∈ Q ) ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) → 𝑤 <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) |
60 |
39 40 41 59
|
syl21anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑤 <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) |
61 |
|
simprl |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑧 ∈ N ) |
62 |
|
pinq |
⊢ ( 𝑧 ∈ N → 〈 𝑧 , 1o 〉 ∈ Q ) |
63 |
|
mulclnq |
⊢ ( ( 〈 𝑧 , 1o 〉 ∈ Q ∧ 𝑏 ∈ Q ) → ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ∈ Q ) |
64 |
62 63
|
sylan |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ∈ Q ) |
65 |
61 39 64
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ∈ Q ) |
66 |
|
simpll1 |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝐴 ∈ P ) |
67 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑦 ∈ 𝐴 ) |
68 |
|
elprnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ Q ) |
69 |
66 67 68
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑦 ∈ Q ) |
70 |
|
ltaddnq |
⊢ ( ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) <Q ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q 𝑦 ) ) |
71 |
|
addcomnq |
⊢ ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q 𝑦 ) = ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) |
72 |
70 71
|
breqtrdi |
⊢ ( ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
73 |
65 69 72
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
74 |
|
ltsonq |
⊢ <Q Or Q |
75 |
|
ltrelnq |
⊢ <Q ⊆ ( Q × Q ) |
76 |
74 75
|
sotri |
⊢ ( ( 𝑤 <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ∧ ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) → 𝑤 <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
77 |
60 73 76
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑤 <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
78 |
|
simpll3 |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) |
79 |
|
opeq1 |
⊢ ( 𝑤 = 1o → 〈 𝑤 , 1o 〉 = 〈 1o , 1o 〉 ) |
80 |
|
df-1nq |
⊢ 1Q = 〈 1o , 1o 〉 |
81 |
79 80
|
eqtr4di |
⊢ ( 𝑤 = 1o → 〈 𝑤 , 1o 〉 = 1Q ) |
82 |
81
|
oveq1d |
⊢ ( 𝑤 = 1o → ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) = ( 1Q ·Q 𝑏 ) ) |
83 |
82
|
oveq2d |
⊢ ( 𝑤 = 1o → ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) = ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ) |
84 |
83
|
eleq1d |
⊢ ( 𝑤 = 1o → ( ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ↔ ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ∈ 𝐴 ) ) |
85 |
84
|
imbi2d |
⊢ ( 𝑤 = 1o → ( ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ↔ ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
86 |
|
opeq1 |
⊢ ( 𝑤 = 𝑧 → 〈 𝑤 , 1o 〉 = 〈 𝑧 , 1o 〉 ) |
87 |
86
|
oveq1d |
⊢ ( 𝑤 = 𝑧 → ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) = ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) |
88 |
87
|
oveq2d |
⊢ ( 𝑤 = 𝑧 → ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) = ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
89 |
88
|
eleq1d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ↔ ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) |
90 |
89
|
imbi2d |
⊢ ( 𝑤 = 𝑧 → ( ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ↔ ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
91 |
|
opeq1 |
⊢ ( 𝑤 = ( 𝑧 +N 1o ) → 〈 𝑤 , 1o 〉 = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
92 |
91
|
oveq1d |
⊢ ( 𝑤 = ( 𝑧 +N 1o ) → ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) = ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) |
93 |
92
|
oveq2d |
⊢ ( 𝑤 = ( 𝑧 +N 1o ) → ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) = ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ) |
94 |
93
|
eleq1d |
⊢ ( 𝑤 = ( 𝑧 +N 1o ) → ( ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ↔ ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) |
95 |
94
|
imbi2d |
⊢ ( 𝑤 = ( 𝑧 +N 1o ) → ( ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ↔ ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
96 |
|
mulcomnq |
⊢ ( 1Q ·Q 𝑏 ) = ( 𝑏 ·Q 1Q ) |
97 |
|
mulidnq |
⊢ ( 𝑏 ∈ Q → ( 𝑏 ·Q 1Q ) = 𝑏 ) |
98 |
96 97
|
eqtrid |
⊢ ( 𝑏 ∈ Q → ( 1Q ·Q 𝑏 ) = 𝑏 ) |
99 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 +Q 𝑏 ) = ( 𝑦 +Q 𝑏 ) ) |
100 |
99
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ↔ ( 𝑦 +Q 𝑏 ) ∈ 𝐴 ) ) |
101 |
100
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q 𝑏 ) ∈ 𝐴 ) |
102 |
|
oveq2 |
⊢ ( ( 1Q ·Q 𝑏 ) = 𝑏 → ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) = ( 𝑦 +Q 𝑏 ) ) |
103 |
102
|
eleq1d |
⊢ ( ( 1Q ·Q 𝑏 ) = 𝑏 → ( ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ∈ 𝐴 ↔ ( 𝑦 +Q 𝑏 ) ∈ 𝐴 ) ) |
104 |
103
|
biimpar |
⊢ ( ( ( 1Q ·Q 𝑏 ) = 𝑏 ∧ ( 𝑦 +Q 𝑏 ) ∈ 𝐴 ) → ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ∈ 𝐴 ) |
105 |
98 101 104
|
syl2an |
⊢ ( ( 𝑏 ∈ Q ∧ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ∈ 𝐴 ) |
106 |
105
|
3impb |
⊢ ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ∈ 𝐴 ) |
107 |
|
3simpa |
⊢ ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ) |
108 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) → ( 𝑥 +Q 𝑏 ) = ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) +Q 𝑏 ) ) |
109 |
108
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) → ( ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ↔ ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) +Q 𝑏 ) ∈ 𝐴 ) ) |
110 |
109
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) → ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) +Q 𝑏 ) ∈ 𝐴 ) |
111 |
|
addassnq |
⊢ ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) +Q 𝑏 ) = ( 𝑦 +Q ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q 𝑏 ) ) |
112 |
|
opex |
⊢ 〈 𝑧 , 1o 〉 ∈ V |
113 |
|
1nq |
⊢ 1Q ∈ Q |
114 |
113
|
elexi |
⊢ 1Q ∈ V |
115 |
|
distrnq |
⊢ ( 𝑣 ·Q ( 𝑥 +Q 𝑦 ) ) = ( ( 𝑣 ·Q 𝑥 ) +Q ( 𝑣 ·Q 𝑦 ) ) |
116 |
112 114 43 46 115
|
caovdir |
⊢ ( ( 〈 𝑧 , 1o 〉 +Q 1Q ) ·Q 𝑏 ) = ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q ( 1Q ·Q 𝑏 ) ) |
117 |
116
|
a1i |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( 〈 𝑧 , 1o 〉 +Q 1Q ) ·Q 𝑏 ) = ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q ( 1Q ·Q 𝑏 ) ) ) |
118 |
|
addpqnq |
⊢ ( ( 〈 𝑧 , 1o 〉 ∈ Q ∧ 1Q ∈ Q ) → ( 〈 𝑧 , 1o 〉 +Q 1Q ) = ( [Q] ‘ ( 〈 𝑧 , 1o 〉 +pQ 1Q ) ) ) |
119 |
62 113 118
|
sylancl |
⊢ ( 𝑧 ∈ N → ( 〈 𝑧 , 1o 〉 +Q 1Q ) = ( [Q] ‘ ( 〈 𝑧 , 1o 〉 +pQ 1Q ) ) ) |
120 |
80
|
oveq2i |
⊢ ( 〈 𝑧 , 1o 〉 +pQ 1Q ) = ( 〈 𝑧 , 1o 〉 +pQ 〈 1o , 1o 〉 ) |
121 |
|
1pi |
⊢ 1o ∈ N |
122 |
|
addpipq |
⊢ ( ( ( 𝑧 ∈ N ∧ 1o ∈ N ) ∧ ( 1o ∈ N ∧ 1o ∈ N ) ) → ( 〈 𝑧 , 1o 〉 +pQ 〈 1o , 1o 〉 ) = 〈 ( ( 𝑧 ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 ) |
123 |
121 121 122
|
mpanr12 |
⊢ ( ( 𝑧 ∈ N ∧ 1o ∈ N ) → ( 〈 𝑧 , 1o 〉 +pQ 〈 1o , 1o 〉 ) = 〈 ( ( 𝑧 ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 ) |
124 |
121 123
|
mpan2 |
⊢ ( 𝑧 ∈ N → ( 〈 𝑧 , 1o 〉 +pQ 〈 1o , 1o 〉 ) = 〈 ( ( 𝑧 ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 ) |
125 |
120 124
|
eqtrid |
⊢ ( 𝑧 ∈ N → ( 〈 𝑧 , 1o 〉 +pQ 1Q ) = 〈 ( ( 𝑧 ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 ) |
126 |
|
mulidpi |
⊢ ( 𝑧 ∈ N → ( 𝑧 ·N 1o ) = 𝑧 ) |
127 |
|
mulidpi |
⊢ ( 1o ∈ N → ( 1o ·N 1o ) = 1o ) |
128 |
121 127
|
mp1i |
⊢ ( 𝑧 ∈ N → ( 1o ·N 1o ) = 1o ) |
129 |
126 128
|
oveq12d |
⊢ ( 𝑧 ∈ N → ( ( 𝑧 ·N 1o ) +N ( 1o ·N 1o ) ) = ( 𝑧 +N 1o ) ) |
130 |
129 128
|
opeq12d |
⊢ ( 𝑧 ∈ N → 〈 ( ( 𝑧 ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
131 |
125 130
|
eqtrd |
⊢ ( 𝑧 ∈ N → ( 〈 𝑧 , 1o 〉 +pQ 1Q ) = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
132 |
131
|
fveq2d |
⊢ ( 𝑧 ∈ N → ( [Q] ‘ ( 〈 𝑧 , 1o 〉 +pQ 1Q ) ) = ( [Q] ‘ 〈 ( 𝑧 +N 1o ) , 1o 〉 ) ) |
133 |
|
addclpi |
⊢ ( ( 𝑧 ∈ N ∧ 1o ∈ N ) → ( 𝑧 +N 1o ) ∈ N ) |
134 |
121 133
|
mpan2 |
⊢ ( 𝑧 ∈ N → ( 𝑧 +N 1o ) ∈ N ) |
135 |
|
pinq |
⊢ ( ( 𝑧 +N 1o ) ∈ N → 〈 ( 𝑧 +N 1o ) , 1o 〉 ∈ Q ) |
136 |
|
nqerid |
⊢ ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ∈ Q → ( [Q] ‘ 〈 ( 𝑧 +N 1o ) , 1o 〉 ) = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
137 |
134 135 136
|
3syl |
⊢ ( 𝑧 ∈ N → ( [Q] ‘ 〈 ( 𝑧 +N 1o ) , 1o 〉 ) = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
138 |
119 132 137
|
3eqtrd |
⊢ ( 𝑧 ∈ N → ( 〈 𝑧 , 1o 〉 +Q 1Q ) = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
139 |
138
|
adantr |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( 〈 𝑧 , 1o 〉 +Q 1Q ) = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
140 |
139
|
oveq1d |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( 〈 𝑧 , 1o 〉 +Q 1Q ) ·Q 𝑏 ) = ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) |
141 |
98
|
adantl |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( 1Q ·Q 𝑏 ) = 𝑏 ) |
142 |
141
|
oveq2d |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q ( 1Q ·Q 𝑏 ) ) = ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q 𝑏 ) ) |
143 |
117 140 142
|
3eqtr3rd |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q 𝑏 ) = ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) |
144 |
143
|
oveq2d |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( 𝑦 +Q ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q 𝑏 ) ) = ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ) |
145 |
111 144
|
eqtrid |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) +Q 𝑏 ) = ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ) |
146 |
145
|
eleq1d |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) +Q 𝑏 ) ∈ 𝐴 ↔ ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) |
147 |
110 146
|
syl5ib |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) |
148 |
147
|
expd |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 → ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 → ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
149 |
148
|
expimpd |
⊢ ( 𝑧 ∈ N → ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) → ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 → ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
150 |
107 149
|
syl5 |
⊢ ( 𝑧 ∈ N → ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 → ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
151 |
150
|
a2d |
⊢ ( 𝑧 ∈ N → ( ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) → ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
152 |
85 90 95 90 106 151
|
indpi |
⊢ ( 𝑧 ∈ N → ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) |
153 |
152
|
imp |
⊢ ( ( 𝑧 ∈ N ∧ ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) |
154 |
61 39 78 67 153
|
syl13anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) |
155 |
|
prcdnq |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) → ( 𝑤 <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) → 𝑤 ∈ 𝐴 ) ) |
156 |
66 154 155
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → ( 𝑤 <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) → 𝑤 ∈ 𝐴 ) ) |
157 |
77 156
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑤 ∈ 𝐴 ) |
158 |
38 157
|
rexlimddv |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) → 𝑤 ∈ 𝐴 ) |
159 |
158
|
expr |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → ( 𝑦 ∈ 𝐴 → 𝑤 ∈ 𝐴 ) ) |
160 |
159
|
exlimdv |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → ( ∃ 𝑦 𝑦 ∈ 𝐴 → 𝑤 ∈ 𝐴 ) ) |
161 |
30 160
|
mpd |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → 𝑤 ∈ 𝐴 ) |
162 |
26 161
|
eqelssd |
⊢ ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) → 𝐴 = Q ) |
163 |
162
|
3expia |
⊢ ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 → 𝐴 = Q ) ) |
164 |
25 163
|
mtod |
⊢ ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ) → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) |
165 |
164
|
expcom |
⊢ ( 𝑏 ∈ Q → ( 𝐴 ∈ P → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ) |
166 |
21 165
|
vtoclga |
⊢ ( 𝐵 ∈ Q → ( 𝐴 ∈ P → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
167 |
166
|
com12 |
⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ Q → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
168 |
5 16 167
|
3syld |
⊢ ( 𝐴 ∈ P → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
169 |
168
|
pm2.01d |
⊢ ( 𝐴 ∈ P → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) |
170 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) |
171 |
169 170
|
sylibr |
⊢ ( 𝐴 ∈ P → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) |