| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prlem934.1 |
⊢ 𝐵 ∈ V |
| 2 |
|
prn0 |
⊢ ( 𝐴 ∈ P → 𝐴 ≠ ∅ ) |
| 3 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) |
| 4 |
3
|
ex |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
| 5 |
2 4
|
syl |
⊢ ( 𝐴 ∈ P → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
| 6 |
|
prpssnq |
⊢ ( 𝐴 ∈ P → 𝐴 ⊊ Q ) |
| 7 |
6
|
pssssd |
⊢ ( 𝐴 ∈ P → 𝐴 ⊆ Q ) |
| 8 |
7
|
sseld |
⊢ ( 𝐴 ∈ P → ( ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → ( 𝑥 +Q 𝐵 ) ∈ Q ) ) |
| 9 |
|
addnqf |
⊢ +Q : ( Q × Q ) ⟶ Q |
| 10 |
9
|
fdmi |
⊢ dom +Q = ( Q × Q ) |
| 11 |
|
0nnq |
⊢ ¬ ∅ ∈ Q |
| 12 |
10 11
|
ndmovrcl |
⊢ ( ( 𝑥 +Q 𝐵 ) ∈ Q → ( 𝑥 ∈ Q ∧ 𝐵 ∈ Q ) ) |
| 13 |
12
|
simprd |
⊢ ( ( 𝑥 +Q 𝐵 ) ∈ Q → 𝐵 ∈ Q ) |
| 14 |
8 13
|
syl6com |
⊢ ( ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → ( 𝐴 ∈ P → 𝐵 ∈ Q ) ) |
| 15 |
14
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → ( 𝐴 ∈ P → 𝐵 ∈ Q ) ) |
| 16 |
15
|
com12 |
⊢ ( 𝐴 ∈ P → ( ∃ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → 𝐵 ∈ Q ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝑥 +Q 𝑏 ) = ( 𝑥 +Q 𝐵 ) ) |
| 18 |
17
|
eleq1d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ↔ ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
| 19 |
18
|
ralbidv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
| 20 |
19
|
notbid |
⊢ ( 𝑏 = 𝐵 → ( ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
| 21 |
20
|
imbi2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ∈ P → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ↔ ( 𝐴 ∈ P → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) ) |
| 22 |
|
dfpss2 |
⊢ ( 𝐴 ⊊ Q ↔ ( 𝐴 ⊆ Q ∧ ¬ 𝐴 = Q ) ) |
| 23 |
6 22
|
sylib |
⊢ ( 𝐴 ∈ P → ( 𝐴 ⊆ Q ∧ ¬ 𝐴 = Q ) ) |
| 24 |
23
|
simprd |
⊢ ( 𝐴 ∈ P → ¬ 𝐴 = Q ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ) → ¬ 𝐴 = Q ) |
| 26 |
7
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) → 𝐴 ⊆ Q ) |
| 27 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → 𝐴 ∈ P ) |
| 28 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐴 ) |
| 29 |
2 28
|
sylib |
⊢ ( 𝐴 ∈ P → ∃ 𝑦 𝑦 ∈ 𝐴 ) |
| 30 |
27 29
|
syl |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → ∃ 𝑦 𝑦 ∈ 𝐴 ) |
| 31 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) → 𝑤 ∈ Q ) |
| 32 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) → 𝑏 ∈ Q ) |
| 33 |
|
recclnq |
⊢ ( 𝑏 ∈ Q → ( *Q ‘ 𝑏 ) ∈ Q ) |
| 34 |
|
mulclnq |
⊢ ( ( 𝑤 ∈ Q ∧ ( *Q ‘ 𝑏 ) ∈ Q ) → ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) ∈ Q ) |
| 35 |
|
archnq |
⊢ ( ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) ∈ Q → ∃ 𝑧 ∈ N ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) |
| 36 |
34 35
|
syl |
⊢ ( ( 𝑤 ∈ Q ∧ ( *Q ‘ 𝑏 ) ∈ Q ) → ∃ 𝑧 ∈ N ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) |
| 37 |
33 36
|
sylan2 |
⊢ ( ( 𝑤 ∈ Q ∧ 𝑏 ∈ Q ) → ∃ 𝑧 ∈ N ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) |
| 38 |
31 32 37
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) → ∃ 𝑧 ∈ N ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) |
| 39 |
|
simpll2 |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑏 ∈ Q ) |
| 40 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑤 ∈ Q ) |
| 41 |
|
simprr |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) |
| 42 |
|
ltmnq |
⊢ ( 𝑏 ∈ Q → ( ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ↔ ( 𝑏 ·Q ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) ) <Q ( 𝑏 ·Q 〈 𝑧 , 1o 〉 ) ) ) |
| 43 |
|
vex |
⊢ 𝑏 ∈ V |
| 44 |
|
vex |
⊢ 𝑤 ∈ V |
| 45 |
|
fvex |
⊢ ( *Q ‘ 𝑏 ) ∈ V |
| 46 |
|
mulcomnq |
⊢ ( 𝑣 ·Q 𝑥 ) = ( 𝑥 ·Q 𝑣 ) |
| 47 |
|
mulassnq |
⊢ ( ( 𝑣 ·Q 𝑥 ) ·Q 𝑦 ) = ( 𝑣 ·Q ( 𝑥 ·Q 𝑦 ) ) |
| 48 |
43 44 45 46 47
|
caov12 |
⊢ ( 𝑏 ·Q ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) ) = ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) |
| 49 |
|
mulcomnq |
⊢ ( 𝑏 ·Q 〈 𝑧 , 1o 〉 ) = ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) |
| 50 |
48 49
|
breq12i |
⊢ ( ( 𝑏 ·Q ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) ) <Q ( 𝑏 ·Q 〈 𝑧 , 1o 〉 ) ↔ ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) |
| 51 |
42 50
|
bitrdi |
⊢ ( 𝑏 ∈ Q → ( ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ↔ ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝑏 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ↔ ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
| 53 |
|
recidnq |
⊢ ( 𝑏 ∈ Q → ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) = 1Q ) |
| 54 |
53
|
oveq2d |
⊢ ( 𝑏 ∈ Q → ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) = ( 𝑤 ·Q 1Q ) ) |
| 55 |
|
mulidnq |
⊢ ( 𝑤 ∈ Q → ( 𝑤 ·Q 1Q ) = 𝑤 ) |
| 56 |
54 55
|
sylan9eq |
⊢ ( ( 𝑏 ∈ Q ∧ 𝑤 ∈ Q ) → ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) = 𝑤 ) |
| 57 |
56
|
breq1d |
⊢ ( ( 𝑏 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( 𝑤 ·Q ( 𝑏 ·Q ( *Q ‘ 𝑏 ) ) ) <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ↔ 𝑤 <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
| 58 |
52 57
|
bitrd |
⊢ ( ( 𝑏 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ↔ 𝑤 <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
| 59 |
58
|
biimpa |
⊢ ( ( ( 𝑏 ∈ Q ∧ 𝑤 ∈ Q ) ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) → 𝑤 <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) |
| 60 |
39 40 41 59
|
syl21anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑤 <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) |
| 61 |
|
simprl |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑧 ∈ N ) |
| 62 |
|
pinq |
⊢ ( 𝑧 ∈ N → 〈 𝑧 , 1o 〉 ∈ Q ) |
| 63 |
|
mulclnq |
⊢ ( ( 〈 𝑧 , 1o 〉 ∈ Q ∧ 𝑏 ∈ Q ) → ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ∈ Q ) |
| 64 |
62 63
|
sylan |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ∈ Q ) |
| 65 |
61 39 64
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ∈ Q ) |
| 66 |
|
simpll1 |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝐴 ∈ P ) |
| 67 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑦 ∈ 𝐴 ) |
| 68 |
|
elprnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ Q ) |
| 69 |
66 67 68
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑦 ∈ Q ) |
| 70 |
|
ltaddnq |
⊢ ( ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) <Q ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q 𝑦 ) ) |
| 71 |
|
addcomnq |
⊢ ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q 𝑦 ) = ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) |
| 72 |
70 71
|
breqtrdi |
⊢ ( ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
| 73 |
65 69 72
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
| 74 |
|
ltsonq |
⊢ <Q Or Q |
| 75 |
|
ltrelnq |
⊢ <Q ⊆ ( Q × Q ) |
| 76 |
74 75
|
sotri |
⊢ ( ( 𝑤 <Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ∧ ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) → 𝑤 <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
| 77 |
60 73 76
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑤 <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
| 78 |
|
simpll3 |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) |
| 79 |
|
opeq1 |
⊢ ( 𝑤 = 1o → 〈 𝑤 , 1o 〉 = 〈 1o , 1o 〉 ) |
| 80 |
|
df-1nq |
⊢ 1Q = 〈 1o , 1o 〉 |
| 81 |
79 80
|
eqtr4di |
⊢ ( 𝑤 = 1o → 〈 𝑤 , 1o 〉 = 1Q ) |
| 82 |
81
|
oveq1d |
⊢ ( 𝑤 = 1o → ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) = ( 1Q ·Q 𝑏 ) ) |
| 83 |
82
|
oveq2d |
⊢ ( 𝑤 = 1o → ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) = ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ) |
| 84 |
83
|
eleq1d |
⊢ ( 𝑤 = 1o → ( ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ↔ ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ∈ 𝐴 ) ) |
| 85 |
84
|
imbi2d |
⊢ ( 𝑤 = 1o → ( ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ↔ ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
| 86 |
|
opeq1 |
⊢ ( 𝑤 = 𝑧 → 〈 𝑤 , 1o 〉 = 〈 𝑧 , 1o 〉 ) |
| 87 |
86
|
oveq1d |
⊢ ( 𝑤 = 𝑧 → ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) = ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) |
| 88 |
87
|
oveq2d |
⊢ ( 𝑤 = 𝑧 → ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) = ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ) |
| 89 |
88
|
eleq1d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ↔ ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) |
| 90 |
89
|
imbi2d |
⊢ ( 𝑤 = 𝑧 → ( ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ↔ ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
| 91 |
|
opeq1 |
⊢ ( 𝑤 = ( 𝑧 +N 1o ) → 〈 𝑤 , 1o 〉 = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
| 92 |
91
|
oveq1d |
⊢ ( 𝑤 = ( 𝑧 +N 1o ) → ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) = ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) |
| 93 |
92
|
oveq2d |
⊢ ( 𝑤 = ( 𝑧 +N 1o ) → ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) = ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ) |
| 94 |
93
|
eleq1d |
⊢ ( 𝑤 = ( 𝑧 +N 1o ) → ( ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ↔ ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) |
| 95 |
94
|
imbi2d |
⊢ ( 𝑤 = ( 𝑧 +N 1o ) → ( ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 𝑤 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ↔ ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
| 96 |
|
mulcomnq |
⊢ ( 1Q ·Q 𝑏 ) = ( 𝑏 ·Q 1Q ) |
| 97 |
|
mulidnq |
⊢ ( 𝑏 ∈ Q → ( 𝑏 ·Q 1Q ) = 𝑏 ) |
| 98 |
96 97
|
eqtrid |
⊢ ( 𝑏 ∈ Q → ( 1Q ·Q 𝑏 ) = 𝑏 ) |
| 99 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 +Q 𝑏 ) = ( 𝑦 +Q 𝑏 ) ) |
| 100 |
99
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ↔ ( 𝑦 +Q 𝑏 ) ∈ 𝐴 ) ) |
| 101 |
100
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q 𝑏 ) ∈ 𝐴 ) |
| 102 |
|
oveq2 |
⊢ ( ( 1Q ·Q 𝑏 ) = 𝑏 → ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) = ( 𝑦 +Q 𝑏 ) ) |
| 103 |
102
|
eleq1d |
⊢ ( ( 1Q ·Q 𝑏 ) = 𝑏 → ( ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ∈ 𝐴 ↔ ( 𝑦 +Q 𝑏 ) ∈ 𝐴 ) ) |
| 104 |
103
|
biimpar |
⊢ ( ( ( 1Q ·Q 𝑏 ) = 𝑏 ∧ ( 𝑦 +Q 𝑏 ) ∈ 𝐴 ) → ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ∈ 𝐴 ) |
| 105 |
98 101 104
|
syl2an |
⊢ ( ( 𝑏 ∈ Q ∧ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ∈ 𝐴 ) |
| 106 |
105
|
3impb |
⊢ ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 1Q ·Q 𝑏 ) ) ∈ 𝐴 ) |
| 107 |
|
3simpa |
⊢ ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ) |
| 108 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) → ( 𝑥 +Q 𝑏 ) = ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) +Q 𝑏 ) ) |
| 109 |
108
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) → ( ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ↔ ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) +Q 𝑏 ) ∈ 𝐴 ) ) |
| 110 |
109
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) → ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) +Q 𝑏 ) ∈ 𝐴 ) |
| 111 |
|
addassnq |
⊢ ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) +Q 𝑏 ) = ( 𝑦 +Q ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q 𝑏 ) ) |
| 112 |
|
opex |
⊢ 〈 𝑧 , 1o 〉 ∈ V |
| 113 |
|
1nq |
⊢ 1Q ∈ Q |
| 114 |
113
|
elexi |
⊢ 1Q ∈ V |
| 115 |
|
distrnq |
⊢ ( 𝑣 ·Q ( 𝑥 +Q 𝑦 ) ) = ( ( 𝑣 ·Q 𝑥 ) +Q ( 𝑣 ·Q 𝑦 ) ) |
| 116 |
112 114 43 46 115
|
caovdir |
⊢ ( ( 〈 𝑧 , 1o 〉 +Q 1Q ) ·Q 𝑏 ) = ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q ( 1Q ·Q 𝑏 ) ) |
| 117 |
116
|
a1i |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( 〈 𝑧 , 1o 〉 +Q 1Q ) ·Q 𝑏 ) = ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q ( 1Q ·Q 𝑏 ) ) ) |
| 118 |
|
addpqnq |
⊢ ( ( 〈 𝑧 , 1o 〉 ∈ Q ∧ 1Q ∈ Q ) → ( 〈 𝑧 , 1o 〉 +Q 1Q ) = ( [Q] ‘ ( 〈 𝑧 , 1o 〉 +pQ 1Q ) ) ) |
| 119 |
62 113 118
|
sylancl |
⊢ ( 𝑧 ∈ N → ( 〈 𝑧 , 1o 〉 +Q 1Q ) = ( [Q] ‘ ( 〈 𝑧 , 1o 〉 +pQ 1Q ) ) ) |
| 120 |
80
|
oveq2i |
⊢ ( 〈 𝑧 , 1o 〉 +pQ 1Q ) = ( 〈 𝑧 , 1o 〉 +pQ 〈 1o , 1o 〉 ) |
| 121 |
|
1pi |
⊢ 1o ∈ N |
| 122 |
|
addpipq |
⊢ ( ( ( 𝑧 ∈ N ∧ 1o ∈ N ) ∧ ( 1o ∈ N ∧ 1o ∈ N ) ) → ( 〈 𝑧 , 1o 〉 +pQ 〈 1o , 1o 〉 ) = 〈 ( ( 𝑧 ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 ) |
| 123 |
121 121 122
|
mpanr12 |
⊢ ( ( 𝑧 ∈ N ∧ 1o ∈ N ) → ( 〈 𝑧 , 1o 〉 +pQ 〈 1o , 1o 〉 ) = 〈 ( ( 𝑧 ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 ) |
| 124 |
121 123
|
mpan2 |
⊢ ( 𝑧 ∈ N → ( 〈 𝑧 , 1o 〉 +pQ 〈 1o , 1o 〉 ) = 〈 ( ( 𝑧 ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 ) |
| 125 |
120 124
|
eqtrid |
⊢ ( 𝑧 ∈ N → ( 〈 𝑧 , 1o 〉 +pQ 1Q ) = 〈 ( ( 𝑧 ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 ) |
| 126 |
|
mulidpi |
⊢ ( 𝑧 ∈ N → ( 𝑧 ·N 1o ) = 𝑧 ) |
| 127 |
|
mulidpi |
⊢ ( 1o ∈ N → ( 1o ·N 1o ) = 1o ) |
| 128 |
121 127
|
mp1i |
⊢ ( 𝑧 ∈ N → ( 1o ·N 1o ) = 1o ) |
| 129 |
126 128
|
oveq12d |
⊢ ( 𝑧 ∈ N → ( ( 𝑧 ·N 1o ) +N ( 1o ·N 1o ) ) = ( 𝑧 +N 1o ) ) |
| 130 |
129 128
|
opeq12d |
⊢ ( 𝑧 ∈ N → 〈 ( ( 𝑧 ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
| 131 |
125 130
|
eqtrd |
⊢ ( 𝑧 ∈ N → ( 〈 𝑧 , 1o 〉 +pQ 1Q ) = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
| 132 |
131
|
fveq2d |
⊢ ( 𝑧 ∈ N → ( [Q] ‘ ( 〈 𝑧 , 1o 〉 +pQ 1Q ) ) = ( [Q] ‘ 〈 ( 𝑧 +N 1o ) , 1o 〉 ) ) |
| 133 |
|
addclpi |
⊢ ( ( 𝑧 ∈ N ∧ 1o ∈ N ) → ( 𝑧 +N 1o ) ∈ N ) |
| 134 |
121 133
|
mpan2 |
⊢ ( 𝑧 ∈ N → ( 𝑧 +N 1o ) ∈ N ) |
| 135 |
|
pinq |
⊢ ( ( 𝑧 +N 1o ) ∈ N → 〈 ( 𝑧 +N 1o ) , 1o 〉 ∈ Q ) |
| 136 |
|
nqerid |
⊢ ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ∈ Q → ( [Q] ‘ 〈 ( 𝑧 +N 1o ) , 1o 〉 ) = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
| 137 |
134 135 136
|
3syl |
⊢ ( 𝑧 ∈ N → ( [Q] ‘ 〈 ( 𝑧 +N 1o ) , 1o 〉 ) = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
| 138 |
119 132 137
|
3eqtrd |
⊢ ( 𝑧 ∈ N → ( 〈 𝑧 , 1o 〉 +Q 1Q ) = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
| 139 |
138
|
adantr |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( 〈 𝑧 , 1o 〉 +Q 1Q ) = 〈 ( 𝑧 +N 1o ) , 1o 〉 ) |
| 140 |
139
|
oveq1d |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( 〈 𝑧 , 1o 〉 +Q 1Q ) ·Q 𝑏 ) = ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) |
| 141 |
98
|
adantl |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( 1Q ·Q 𝑏 ) = 𝑏 ) |
| 142 |
141
|
oveq2d |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q ( 1Q ·Q 𝑏 ) ) = ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q 𝑏 ) ) |
| 143 |
117 140 142
|
3eqtr3rd |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q 𝑏 ) = ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) |
| 144 |
143
|
oveq2d |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( 𝑦 +Q ( ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) +Q 𝑏 ) ) = ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ) |
| 145 |
111 144
|
eqtrid |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) +Q 𝑏 ) = ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ) |
| 146 |
145
|
eleq1d |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) +Q 𝑏 ) ∈ 𝐴 ↔ ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) |
| 147 |
110 146
|
imbitrid |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) |
| 148 |
147
|
expd |
⊢ ( ( 𝑧 ∈ N ∧ 𝑏 ∈ Q ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 → ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 → ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
| 149 |
148
|
expimpd |
⊢ ( 𝑧 ∈ N → ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) → ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 → ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
| 150 |
107 149
|
syl5 |
⊢ ( 𝑧 ∈ N → ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 → ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
| 151 |
150
|
a2d |
⊢ ( 𝑧 ∈ N → ( ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) → ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 ( 𝑧 +N 1o ) , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) ) |
| 152 |
85 90 95 90 106 151
|
indpi |
⊢ ( 𝑧 ∈ N → ( ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) ) |
| 153 |
152
|
imp |
⊢ ( ( 𝑧 ∈ N ∧ ( 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) |
| 154 |
61 39 78 67 153
|
syl13anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) |
| 155 |
|
prcdnq |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) ∈ 𝐴 ) → ( 𝑤 <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) → 𝑤 ∈ 𝐴 ) ) |
| 156 |
66 154 155
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → ( 𝑤 <Q ( 𝑦 +Q ( 〈 𝑧 , 1o 〉 ·Q 𝑏 ) ) → 𝑤 ∈ 𝐴 ) ) |
| 157 |
77 156
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ N ∧ ( 𝑤 ·Q ( *Q ‘ 𝑏 ) ) <Q 〈 𝑧 , 1o 〉 ) ) → 𝑤 ∈ 𝐴 ) |
| 158 |
38 157
|
rexlimddv |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ ( 𝑤 ∈ Q ∧ 𝑦 ∈ 𝐴 ) ) → 𝑤 ∈ 𝐴 ) |
| 159 |
158
|
expr |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → ( 𝑦 ∈ 𝐴 → 𝑤 ∈ 𝐴 ) ) |
| 160 |
159
|
exlimdv |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → ( ∃ 𝑦 𝑦 ∈ 𝐴 → 𝑤 ∈ 𝐴 ) ) |
| 161 |
30 160
|
mpd |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → 𝑤 ∈ 𝐴 ) |
| 162 |
26 161
|
eqelssd |
⊢ ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) → 𝐴 = Q ) |
| 163 |
162
|
3expia |
⊢ ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 → 𝐴 = Q ) ) |
| 164 |
25 163
|
mtod |
⊢ ( ( 𝐴 ∈ P ∧ 𝑏 ∈ Q ) → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) |
| 165 |
164
|
expcom |
⊢ ( 𝑏 ∈ Q → ( 𝐴 ∈ P → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝑏 ) ∈ 𝐴 ) ) |
| 166 |
21 165
|
vtoclga |
⊢ ( 𝐵 ∈ Q → ( 𝐴 ∈ P → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
| 167 |
166
|
com12 |
⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ Q → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
| 168 |
5 16 167
|
3syld |
⊢ ( 𝐴 ∈ P → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) ) |
| 169 |
168
|
pm2.01d |
⊢ ( 𝐴 ∈ P → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) |
| 170 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) |
| 171 |
169 170
|
sylibr |
⊢ ( 𝐴 ∈ P → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 +Q 𝐵 ) ∈ 𝐴 ) |