Metamath Proof Explorer


Theorem prlem936

Description: Lemma 9-3.6 of Gleason p. 124. (Contributed by NM, 26-Apr-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion prlem936 ( ( 𝐴P ∧ 1Q <Q 𝐵 ) → ∃ 𝑥𝐴 ¬ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 ltrelnq <Q ⊆ ( Q × Q )
2 1 brel ( 1Q <Q 𝐵 → ( 1QQ𝐵Q ) )
3 2 simprd ( 1Q <Q 𝐵𝐵Q )
4 3 adantl ( ( 𝐴P ∧ 1Q <Q 𝐵 ) → 𝐵Q )
5 breq2 ( 𝑏 = 𝐵 → ( 1Q <Q 𝑏 ↔ 1Q <Q 𝐵 ) )
6 5 anbi2d ( 𝑏 = 𝐵 → ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ↔ ( 𝐴P ∧ 1Q <Q 𝐵 ) ) )
7 oveq2 ( 𝑏 = 𝐵 → ( 𝑥 ·Q 𝑏 ) = ( 𝑥 ·Q 𝐵 ) )
8 7 eleq1d ( 𝑏 = 𝐵 → ( ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ↔ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 ) )
9 8 notbid ( 𝑏 = 𝐵 → ( ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ↔ ¬ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 ) )
10 9 rexbidv ( 𝑏 = 𝐵 → ( ∃ 𝑥𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ↔ ∃ 𝑥𝐴 ¬ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 ) )
11 6 10 imbi12d ( 𝑏 = 𝐵 → ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) → ∃ 𝑥𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ↔ ( ( 𝐴P ∧ 1Q <Q 𝐵 ) → ∃ 𝑥𝐴 ¬ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 ) ) )
12 prn0 ( 𝐴P𝐴 ≠ ∅ )
13 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑦 𝑦𝐴 )
14 12 13 sylib ( 𝐴P → ∃ 𝑦 𝑦𝐴 )
15 14 adantr ( ( 𝐴P ∧ 1Q <Q 𝑏 ) → ∃ 𝑦 𝑦𝐴 )
16 elprnq ( ( 𝐴P𝑦𝐴 ) → 𝑦Q )
17 16 ad2ant2r ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → 𝑦Q )
18 mulidnq ( 𝑦Q → ( 𝑦 ·Q 1Q ) = 𝑦 )
19 17 18 syl ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ( 𝑦 ·Q 1Q ) = 𝑦 )
20 simplr ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → 1Q <Q 𝑏 )
21 ltmnq ( 𝑦Q → ( 1Q <Q 𝑏 ↔ ( 𝑦 ·Q 1Q ) <Q ( 𝑦 ·Q 𝑏 ) ) )
22 21 biimpa ( ( 𝑦Q ∧ 1Q <Q 𝑏 ) → ( 𝑦 ·Q 1Q ) <Q ( 𝑦 ·Q 𝑏 ) )
23 17 20 22 syl2anc ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ( 𝑦 ·Q 1Q ) <Q ( 𝑦 ·Q 𝑏 ) )
24 19 23 eqbrtrrd ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → 𝑦 <Q ( 𝑦 ·Q 𝑏 ) )
25 1 brel ( 1Q <Q 𝑏 → ( 1QQ𝑏Q ) )
26 25 simprd ( 1Q <Q 𝑏𝑏Q )
27 26 ad2antlr ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → 𝑏Q )
28 mulclnq ( ( 𝑦Q𝑏Q ) → ( 𝑦 ·Q 𝑏 ) ∈ Q )
29 17 27 28 syl2anc ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ( 𝑦 ·Q 𝑏 ) ∈ Q )
30 ltexnq ( ( 𝑦 ·Q 𝑏 ) ∈ Q → ( 𝑦 <Q ( 𝑦 ·Q 𝑏 ) ↔ ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) )
31 29 30 syl ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ( 𝑦 <Q ( 𝑦 ·Q 𝑏 ) ↔ ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) )
32 24 31 mpbid ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) )
33 simplll ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → 𝐴P )
34 vex 𝑧 ∈ V
35 34 prlem934 ( 𝐴P → ∃ 𝑥𝐴 ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 )
36 33 35 syl ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ∃ 𝑥𝐴 ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 )
37 33 adantr ( ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥𝐴 ) → 𝐴P )
38 simprr ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 )
39 eleq1 ( ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) → ( ( 𝑦 +Q 𝑧 ) ∈ 𝐴 ↔ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) )
40 39 biimparc ( ( ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ( 𝑦 +Q 𝑧 ) ∈ 𝐴 )
41 38 40 sylan ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ( 𝑦 +Q 𝑧 ) ∈ 𝐴 )
42 41 adantr ( ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥𝐴 ) → ( 𝑦 +Q 𝑧 ) ∈ 𝐴 )
43 elprnq ( ( 𝐴P𝑥𝐴 ) → 𝑥Q )
44 33 43 sylan ( ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥𝐴 ) → 𝑥Q )
45 elprnq ( ( 𝐴P ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐴 ) → ( 𝑦 +Q 𝑧 ) ∈ Q )
46 addnqf +Q : ( Q × Q ) ⟶ Q
47 46 fdmi dom +Q = ( Q × Q )
48 0nnq ¬ ∅ ∈ Q
49 47 48 ndmovrcl ( ( 𝑦 +Q 𝑧 ) ∈ Q → ( 𝑦Q𝑧Q ) )
50 49 simprd ( ( 𝑦 +Q 𝑧 ) ∈ Q𝑧Q )
51 45 50 syl ( ( 𝐴P ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐴 ) → 𝑧Q )
52 33 41 51 syl2anc ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → 𝑧Q )
53 52 adantr ( ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥𝐴 ) → 𝑧Q )
54 addclnq ( ( 𝑥Q𝑧Q ) → ( 𝑥 +Q 𝑧 ) ∈ Q )
55 44 53 54 syl2anc ( ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥𝐴 ) → ( 𝑥 +Q 𝑧 ) ∈ Q )
56 prub ( ( ( 𝐴P ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐴 ) ∧ ( 𝑥 +Q 𝑧 ) ∈ Q ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ) )
57 37 42 55 56 syl21anc ( ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥𝐴 ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ) )
58 27 ad2antrr ( ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥𝐴 ) → 𝑏Q )
59 mulclnq ( ( 𝑥Q𝑏Q ) → ( 𝑥 ·Q 𝑏 ) ∈ Q )
60 44 58 59 syl2anc ( ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥𝐴 ) → ( 𝑥 ·Q 𝑏 ) ∈ Q )
61 17 ad2antrr ( ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥𝐴 ) → 𝑦Q )
62 simplr ( ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥𝐴 ) → ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) )
63 recclnq ( 𝑦Q → ( *Q𝑦 ) ∈ Q )
64 mulclnq ( ( 𝑧Q ∧ ( *Q𝑦 ) ∈ Q ) → ( 𝑧 ·Q ( *Q𝑦 ) ) ∈ Q )
65 63 64 sylan2 ( ( 𝑧Q𝑦Q ) → ( 𝑧 ·Q ( *Q𝑦 ) ) ∈ Q )
66 65 ancoms ( ( 𝑦Q𝑧Q ) → ( 𝑧 ·Q ( *Q𝑦 ) ) ∈ Q )
67 ltmnq ( ( 𝑧 ·Q ( *Q𝑦 ) ) ∈ Q → ( 𝑦 <Q 𝑥 ↔ ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑦 ) <Q ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) ) )
68 66 67 syl ( ( 𝑦Q𝑧Q ) → ( 𝑦 <Q 𝑥 ↔ ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑦 ) <Q ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) ) )
69 mulassnq ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑦 ) = ( 𝑧 ·Q ( ( *Q𝑦 ) ·Q 𝑦 ) )
70 mulcomnq ( ( *Q𝑦 ) ·Q 𝑦 ) = ( 𝑦 ·Q ( *Q𝑦 ) )
71 70 oveq2i ( 𝑧 ·Q ( ( *Q𝑦 ) ·Q 𝑦 ) ) = ( 𝑧 ·Q ( 𝑦 ·Q ( *Q𝑦 ) ) )
72 69 71 eqtri ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑦 ) = ( 𝑧 ·Q ( 𝑦 ·Q ( *Q𝑦 ) ) )
73 recidnq ( 𝑦Q → ( 𝑦 ·Q ( *Q𝑦 ) ) = 1Q )
74 73 oveq2d ( 𝑦Q → ( 𝑧 ·Q ( 𝑦 ·Q ( *Q𝑦 ) ) ) = ( 𝑧 ·Q 1Q ) )
75 mulidnq ( 𝑧Q → ( 𝑧 ·Q 1Q ) = 𝑧 )
76 74 75 sylan9eq ( ( 𝑦Q𝑧Q ) → ( 𝑧 ·Q ( 𝑦 ·Q ( *Q𝑦 ) ) ) = 𝑧 )
77 72 76 syl5eq ( ( 𝑦Q𝑧Q ) → ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑦 ) = 𝑧 )
78 77 breq1d ( ( 𝑦Q𝑧Q ) → ( ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑦 ) <Q ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) ↔ 𝑧 <Q ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) ) )
79 68 78 bitrd ( ( 𝑦Q𝑧Q ) → ( 𝑦 <Q 𝑥𝑧 <Q ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) ) )
80 79 adantll ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) ∧ 𝑧Q ) → ( 𝑦 <Q 𝑥𝑧 <Q ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) ) )
81 mulnqf ·Q : ( Q × Q ) ⟶ Q
82 81 fdmi dom ·Q = ( Q × Q )
83 82 48 ndmovrcl ( ( 𝑥 ·Q 𝑏 ) ∈ Q → ( 𝑥Q𝑏Q ) )
84 83 simpld ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑥Q )
85 ltanq ( 𝑥Q → ( 𝑧 <Q ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 +Q ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) ) ) )
86 84 85 syl ( ( 𝑥 ·Q 𝑏 ) ∈ Q → ( 𝑧 <Q ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 +Q ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) ) ) )
87 86 adantr ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) → ( 𝑧 <Q ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 +Q ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) ) ) )
88 vex 𝑦 ∈ V
89 ovex ( 𝑥 ·Q ( *Q𝑦 ) ) ∈ V
90 mulcomnq ( 𝑢 ·Q 𝑤 ) = ( 𝑤 ·Q 𝑢 )
91 distrnq ( 𝑢 ·Q ( 𝑤 +Q 𝑣 ) ) = ( ( 𝑢 ·Q 𝑤 ) +Q ( 𝑢 ·Q 𝑣 ) )
92 88 34 89 90 91 caovdir ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) = ( ( 𝑦 ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) +Q ( 𝑧 ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) )
93 vex 𝑥 ∈ V
94 fvex ( *Q𝑦 ) ∈ V
95 mulassnq ( ( 𝑢 ·Q 𝑤 ) ·Q 𝑣 ) = ( 𝑢 ·Q ( 𝑤 ·Q 𝑣 ) )
96 88 93 94 90 95 caov12 ( 𝑦 ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) = ( 𝑥 ·Q ( 𝑦 ·Q ( *Q𝑦 ) ) )
97 73 oveq2d ( 𝑦Q → ( 𝑥 ·Q ( 𝑦 ·Q ( *Q𝑦 ) ) ) = ( 𝑥 ·Q 1Q ) )
98 mulidnq ( 𝑥Q → ( 𝑥 ·Q 1Q ) = 𝑥 )
99 84 98 syl ( ( 𝑥 ·Q 𝑏 ) ∈ Q → ( 𝑥 ·Q 1Q ) = 𝑥 )
100 97 99 sylan9eqr ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) → ( 𝑥 ·Q ( 𝑦 ·Q ( *Q𝑦 ) ) ) = 𝑥 )
101 96 100 syl5eq ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) → ( 𝑦 ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) = 𝑥 )
102 mulcomnq ( 𝑥 ·Q ( *Q𝑦 ) ) = ( ( *Q𝑦 ) ·Q 𝑥 )
103 102 oveq2i ( 𝑧 ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) = ( 𝑧 ·Q ( ( *Q𝑦 ) ·Q 𝑥 ) )
104 mulassnq ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) = ( 𝑧 ·Q ( ( *Q𝑦 ) ·Q 𝑥 ) )
105 103 104 eqtr4i ( 𝑧 ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) = ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 )
106 105 a1i ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) → ( 𝑧 ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) = ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) )
107 101 106 oveq12d ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) → ( ( 𝑦 ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) +Q ( 𝑧 ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) ) = ( 𝑥 +Q ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) ) )
108 92 107 syl5eq ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) → ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) = ( 𝑥 +Q ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) ) )
109 108 breq2d ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) → ( ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 +Q ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) ) ) )
110 87 109 bitr4d ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) → ( 𝑧 <Q ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) ) )
111 110 adantr ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) ∧ 𝑧Q ) → ( 𝑧 <Q ( ( 𝑧 ·Q ( *Q𝑦 ) ) ·Q 𝑥 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) ) )
112 80 111 bitrd ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) ∧ 𝑧Q ) → ( 𝑦 <Q 𝑥 ↔ ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) ) )
113 112 adantrr ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) ∧ ( 𝑧Q ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ) → ( 𝑦 <Q 𝑥 ↔ ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) ) )
114 ltanq ( 𝑧Q → ( 𝑦 <Q 𝑥 ↔ ( 𝑧 +Q 𝑦 ) <Q ( 𝑧 +Q 𝑥 ) ) )
115 addcomnq ( 𝑧 +Q 𝑦 ) = ( 𝑦 +Q 𝑧 )
116 addcomnq ( 𝑧 +Q 𝑥 ) = ( 𝑥 +Q 𝑧 )
117 115 116 breq12i ( ( 𝑧 +Q 𝑦 ) <Q ( 𝑧 +Q 𝑥 ) ↔ ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) )
118 114 117 bitrdi ( 𝑧Q → ( 𝑦 <Q 𝑥 ↔ ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ) )
119 118 ad2antrl ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) ∧ ( 𝑧Q ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ) → ( 𝑦 <Q 𝑥 ↔ ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ) )
120 oveq1 ( ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) → ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) = ( ( 𝑦 ·Q 𝑏 ) ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) )
121 vex 𝑏 ∈ V
122 88 121 93 90 95 94 caov411 ( ( 𝑦 ·Q 𝑏 ) ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) = ( ( 𝑥 ·Q 𝑏 ) ·Q ( 𝑦 ·Q ( *Q𝑦 ) ) )
123 73 oveq2d ( 𝑦Q → ( ( 𝑥 ·Q 𝑏 ) ·Q ( 𝑦 ·Q ( *Q𝑦 ) ) ) = ( ( 𝑥 ·Q 𝑏 ) ·Q 1Q ) )
124 mulidnq ( ( 𝑥 ·Q 𝑏 ) ∈ Q → ( ( 𝑥 ·Q 𝑏 ) ·Q 1Q ) = ( 𝑥 ·Q 𝑏 ) )
125 123 124 sylan9eqr ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) → ( ( 𝑥 ·Q 𝑏 ) ·Q ( 𝑦 ·Q ( *Q𝑦 ) ) ) = ( 𝑥 ·Q 𝑏 ) )
126 122 125 syl5eq ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) → ( ( 𝑦 ·Q 𝑏 ) ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) = ( 𝑥 ·Q 𝑏 ) )
127 120 126 sylan9eqr ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) = ( 𝑥 ·Q 𝑏 ) )
128 127 breq2d ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ( ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) )
129 128 adantrl ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) ∧ ( 𝑧Q ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ) → ( ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q𝑦 ) ) ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) )
130 113 119 129 3bitr3d ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q𝑦Q ) ∧ ( 𝑧Q ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ) → ( ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) )
131 60 61 53 62 130 syl22anc ( ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥𝐴 ) → ( ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) )
132 57 131 sylibd ( ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥𝐴 ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) )
133 prcdnq ( ( 𝐴P ∧ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) → ( ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) → ( 𝑥 +Q 𝑧 ) ∈ 𝐴 ) )
134 133 impancom ( ( 𝐴P ∧ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) → ( ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 → ( 𝑥 +Q 𝑧 ) ∈ 𝐴 ) )
135 134 con3d ( ( 𝐴P ∧ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) )
136 135 ex ( 𝐴P → ( ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) )
137 136 com23 ( 𝐴P → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ( ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) → ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) )
138 37 137 syl ( ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥𝐴 ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ( ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) → ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) )
139 132 138 mpdd ( ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥𝐴 ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) )
140 139 reximdva ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ( ∃ 𝑥𝐴 ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ∃ 𝑥𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) )
141 36 140 mpd ( ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ∃ 𝑥𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 )
142 32 141 exlimddv ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ∃ 𝑥𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 )
143 142 expr ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ 𝑦𝐴 ) → ( ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 → ∃ 𝑥𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) )
144 oveq1 ( 𝑥 = 𝑦 → ( 𝑥 ·Q 𝑏 ) = ( 𝑦 ·Q 𝑏 ) )
145 144 eleq1d ( 𝑥 = 𝑦 → ( ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ↔ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) )
146 145 notbid ( 𝑥 = 𝑦 → ( ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ↔ ¬ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) )
147 146 rspcev ( ( 𝑦𝐴 ∧ ¬ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) → ∃ 𝑥𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 )
148 147 ex ( 𝑦𝐴 → ( ¬ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 → ∃ 𝑥𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) )
149 148 adantl ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ 𝑦𝐴 ) → ( ¬ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 → ∃ 𝑥𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) )
150 143 149 pm2.61d ( ( ( 𝐴P ∧ 1Q <Q 𝑏 ) ∧ 𝑦𝐴 ) → ∃ 𝑥𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 )
151 15 150 exlimddv ( ( 𝐴P ∧ 1Q <Q 𝑏 ) → ∃ 𝑥𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 )
152 11 151 vtoclg ( 𝐵Q → ( ( 𝐴P ∧ 1Q <Q 𝐵 ) → ∃ 𝑥𝐴 ¬ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 ) )
153 4 152 mpcom ( ( 𝐴P ∧ 1Q <Q 𝐵 ) → ∃ 𝑥𝐴 ¬ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 )