Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1 |
⊢ ( ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
2 |
|
3ioran |
⊢ ( ¬ ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ↔ ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ∧ ¬ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) |
3 |
|
3ianor |
⊢ ( ¬ ( 5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃 ) ↔ ( ¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃 ) ) |
4 |
|
eluz2 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) ↔ ( 5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃 ) ) |
5 |
3 4
|
xchnxbir |
⊢ ( ¬ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ↔ ( ¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃 ) ) |
6 |
|
5nn |
⊢ 5 ∈ ℕ |
7 |
6
|
nnzi |
⊢ 5 ∈ ℤ |
8 |
7
|
pm2.24i |
⊢ ( ¬ 5 ∈ ℤ → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
9 |
|
pm2.24 |
⊢ ( 𝑃 ∈ ℤ → ( ¬ 𝑃 ∈ ℤ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
10 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
11 |
9 10
|
syl11 |
⊢ ( ¬ 𝑃 ∈ ℤ → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
12 |
11
|
a1d |
⊢ ( ¬ 𝑃 ∈ ℤ → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
13 |
10
|
zred |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ ) |
14 |
|
5re |
⊢ 5 ∈ ℝ |
15 |
14
|
a1i |
⊢ ( 𝑃 ∈ ℙ → 5 ∈ ℝ ) |
16 |
13 15
|
ltnled |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 < 5 ↔ ¬ 5 ≤ 𝑃 ) ) |
17 |
|
prm23lt5 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) |
18 |
|
ioran |
⊢ ( ¬ ( 𝑃 = 2 ∨ 𝑃 = 3 ) ↔ ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) ) |
19 |
|
pm2.24 |
⊢ ( ( 𝑃 = 2 ∨ 𝑃 = 3 ) → ( ¬ ( 𝑃 = 2 ∨ 𝑃 = 3 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
20 |
18 19
|
syl5bir |
⊢ ( ( 𝑃 = 2 ∨ 𝑃 = 3 ) → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
21 |
17 20
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
22 |
21
|
ex |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 < 5 → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
23 |
16 22
|
sylbird |
⊢ ( 𝑃 ∈ ℙ → ( ¬ 5 ≤ 𝑃 → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
24 |
23
|
com3l |
⊢ ( ¬ 5 ≤ 𝑃 → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
25 |
8 12 24
|
3jaoi |
⊢ ( ( ¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃 ) → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
26 |
5 25
|
sylbi |
⊢ ( ¬ 𝑃 ∈ ( ℤ≥ ‘ 5 ) → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
27 |
26
|
com12 |
⊢ ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( ¬ 𝑃 ∈ ( ℤ≥ ‘ 5 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
28 |
27
|
3impia |
⊢ ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ∧ ¬ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
29 |
2 28
|
sylbi |
⊢ ( ¬ ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
30 |
1 29
|
pm2.61i |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) |