| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1 |
⊢ ( ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
| 2 |
|
3ioran |
⊢ ( ¬ ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ↔ ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ∧ ¬ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) |
| 3 |
|
3ianor |
⊢ ( ¬ ( 5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃 ) ↔ ( ¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃 ) ) |
| 4 |
|
eluz2 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) ↔ ( 5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃 ) ) |
| 5 |
3 4
|
xchnxbir |
⊢ ( ¬ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ↔ ( ¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃 ) ) |
| 6 |
|
5nn |
⊢ 5 ∈ ℕ |
| 7 |
6
|
nnzi |
⊢ 5 ∈ ℤ |
| 8 |
7
|
pm2.24i |
⊢ ( ¬ 5 ∈ ℤ → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
| 9 |
|
pm2.24 |
⊢ ( 𝑃 ∈ ℤ → ( ¬ 𝑃 ∈ ℤ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
| 10 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
| 11 |
9 10
|
syl11 |
⊢ ( ¬ 𝑃 ∈ ℤ → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
| 12 |
11
|
a1d |
⊢ ( ¬ 𝑃 ∈ ℤ → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
| 13 |
10
|
zred |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ ) |
| 14 |
|
5re |
⊢ 5 ∈ ℝ |
| 15 |
14
|
a1i |
⊢ ( 𝑃 ∈ ℙ → 5 ∈ ℝ ) |
| 16 |
13 15
|
ltnled |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 < 5 ↔ ¬ 5 ≤ 𝑃 ) ) |
| 17 |
|
prm23lt5 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) |
| 18 |
|
ioran |
⊢ ( ¬ ( 𝑃 = 2 ∨ 𝑃 = 3 ) ↔ ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) ) |
| 19 |
|
pm2.24 |
⊢ ( ( 𝑃 = 2 ∨ 𝑃 = 3 ) → ( ¬ ( 𝑃 = 2 ∨ 𝑃 = 3 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
| 20 |
18 19
|
biimtrrid |
⊢ ( ( 𝑃 = 2 ∨ 𝑃 = 3 ) → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
| 21 |
17 20
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
| 22 |
21
|
ex |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 < 5 → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
| 23 |
16 22
|
sylbird |
⊢ ( 𝑃 ∈ ℙ → ( ¬ 5 ≤ 𝑃 → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
| 24 |
23
|
com3l |
⊢ ( ¬ 5 ≤ 𝑃 → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
| 25 |
8 12 24
|
3jaoi |
⊢ ( ( ¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃 ) → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
| 26 |
5 25
|
sylbi |
⊢ ( ¬ 𝑃 ∈ ( ℤ≥ ‘ 5 ) → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
| 27 |
26
|
com12 |
⊢ ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( ¬ 𝑃 ∈ ( ℤ≥ ‘ 5 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
| 28 |
27
|
3impia |
⊢ ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ∧ ¬ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
| 29 |
2 28
|
sylbi |
⊢ ( ¬ ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
| 30 |
1 29
|
pm2.61i |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) |