| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 2 | 1 | nnnn0d | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ0 ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  <  5 )  →  𝑃  ∈  ℕ0 ) | 
						
							| 4 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 5 | 4 | a1i | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  <  5 )  →  4  ∈  ℕ0 ) | 
						
							| 6 |  | df-5 | ⊢ 5  =  ( 4  +  1 ) | 
						
							| 7 | 6 | breq2i | ⊢ ( 𝑃  <  5  ↔  𝑃  <  ( 4  +  1 ) ) | 
						
							| 8 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 9 |  | 4z | ⊢ 4  ∈  ℤ | 
						
							| 10 |  | zleltp1 | ⊢ ( ( 𝑃  ∈  ℤ  ∧  4  ∈  ℤ )  →  ( 𝑃  ≤  4  ↔  𝑃  <  ( 4  +  1 ) ) ) | 
						
							| 11 | 8 9 10 | sylancl | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  ≤  4  ↔  𝑃  <  ( 4  +  1 ) ) ) | 
						
							| 12 | 11 | biimprd | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  <  ( 4  +  1 )  →  𝑃  ≤  4 ) ) | 
						
							| 13 | 7 12 | biimtrid | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  <  5  →  𝑃  ≤  4 ) ) | 
						
							| 14 | 13 | imp | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  <  5 )  →  𝑃  ≤  4 ) | 
						
							| 15 |  | elfz2nn0 | ⊢ ( 𝑃  ∈  ( 0 ... 4 )  ↔  ( 𝑃  ∈  ℕ0  ∧  4  ∈  ℕ0  ∧  𝑃  ≤  4 ) ) | 
						
							| 16 | 3 5 14 15 | syl3anbrc | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  <  5 )  →  𝑃  ∈  ( 0 ... 4 ) ) | 
						
							| 17 |  | fz0to4untppr | ⊢ ( 0 ... 4 )  =  ( { 0 ,  1 ,  2 }  ∪  { 3 ,  4 } ) | 
						
							| 18 | 17 | eleq2i | ⊢ ( 𝑃  ∈  ( 0 ... 4 )  ↔  𝑃  ∈  ( { 0 ,  1 ,  2 }  ∪  { 3 ,  4 } ) ) | 
						
							| 19 |  | elun | ⊢ ( 𝑃  ∈  ( { 0 ,  1 ,  2 }  ∪  { 3 ,  4 } )  ↔  ( 𝑃  ∈  { 0 ,  1 ,  2 }  ∨  𝑃  ∈  { 3 ,  4 } ) ) | 
						
							| 20 |  | eltpi | ⊢ ( 𝑃  ∈  { 0 ,  1 ,  2 }  →  ( 𝑃  =  0  ∨  𝑃  =  1  ∨  𝑃  =  2 ) ) | 
						
							| 21 |  | nnne0 | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ≠  0 ) | 
						
							| 22 |  | eqneqall | ⊢ ( 𝑃  =  0  →  ( 𝑃  ≠  0  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) ) | 
						
							| 23 | 22 | com12 | ⊢ ( 𝑃  ≠  0  →  ( 𝑃  =  0  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) ) | 
						
							| 24 | 1 21 23 | 3syl | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  =  0  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) ) | 
						
							| 25 | 24 | com12 | ⊢ ( 𝑃  =  0  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) ) | 
						
							| 26 |  | eleq1 | ⊢ ( 𝑃  =  1  →  ( 𝑃  ∈  ℙ  ↔  1  ∈  ℙ ) ) | 
						
							| 27 |  | 1nprm | ⊢ ¬  1  ∈  ℙ | 
						
							| 28 | 27 | pm2.21i | ⊢ ( 1  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) | 
						
							| 29 | 26 28 | biimtrdi | ⊢ ( 𝑃  =  1  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) ) | 
						
							| 30 |  | orc | ⊢ ( 𝑃  =  2  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) | 
						
							| 31 | 30 | a1d | ⊢ ( 𝑃  =  2  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) ) | 
						
							| 32 | 25 29 31 | 3jaoi | ⊢ ( ( 𝑃  =  0  ∨  𝑃  =  1  ∨  𝑃  =  2 )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) ) | 
						
							| 33 | 20 32 | syl | ⊢ ( 𝑃  ∈  { 0 ,  1 ,  2 }  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) ) | 
						
							| 34 |  | elpri | ⊢ ( 𝑃  ∈  { 3 ,  4 }  →  ( 𝑃  =  3  ∨  𝑃  =  4 ) ) | 
						
							| 35 |  | olc | ⊢ ( 𝑃  =  3  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) | 
						
							| 36 | 35 | a1d | ⊢ ( 𝑃  =  3  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) ) | 
						
							| 37 |  | eleq1 | ⊢ ( 𝑃  =  4  →  ( 𝑃  ∈  ℙ  ↔  4  ∈  ℙ ) ) | 
						
							| 38 |  | 4nprm | ⊢ ¬  4  ∈  ℙ | 
						
							| 39 | 38 | pm2.21i | ⊢ ( 4  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) | 
						
							| 40 | 37 39 | biimtrdi | ⊢ ( 𝑃  =  4  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) ) | 
						
							| 41 | 36 40 | jaoi | ⊢ ( ( 𝑃  =  3  ∨  𝑃  =  4 )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) ) | 
						
							| 42 | 34 41 | syl | ⊢ ( 𝑃  ∈  { 3 ,  4 }  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) ) | 
						
							| 43 | 33 42 | jaoi | ⊢ ( ( 𝑃  ∈  { 0 ,  1 ,  2 }  ∨  𝑃  ∈  { 3 ,  4 } )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) ) | 
						
							| 44 | 19 43 | sylbi | ⊢ ( 𝑃  ∈  ( { 0 ,  1 ,  2 }  ∪  { 3 ,  4 } )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) ) | 
						
							| 45 | 44 | com12 | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  ∈  ( { 0 ,  1 ,  2 }  ∪  { 3 ,  4 } )  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  <  5 )  →  ( 𝑃  ∈  ( { 0 ,  1 ,  2 }  ∪  { 3 ,  4 } )  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) ) | 
						
							| 47 | 18 46 | biimtrid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  <  5 )  →  ( 𝑃  ∈  ( 0 ... 4 )  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) ) | 
						
							| 48 | 16 47 | mpd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  <  5 )  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) |