Step |
Hyp |
Ref |
Expression |
1 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
2 |
1
|
nnnn0d |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ0 ) |
3 |
2
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → 𝑃 ∈ ℕ0 ) |
4 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
5 |
4
|
a1i |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → 4 ∈ ℕ0 ) |
6 |
|
df-5 |
⊢ 5 = ( 4 + 1 ) |
7 |
6
|
breq2i |
⊢ ( 𝑃 < 5 ↔ 𝑃 < ( 4 + 1 ) ) |
8 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
9 |
|
4z |
⊢ 4 ∈ ℤ |
10 |
|
zleltp1 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 𝑃 ≤ 4 ↔ 𝑃 < ( 4 + 1 ) ) ) |
11 |
8 9 10
|
sylancl |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ≤ 4 ↔ 𝑃 < ( 4 + 1 ) ) ) |
12 |
11
|
biimprd |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 < ( 4 + 1 ) → 𝑃 ≤ 4 ) ) |
13 |
7 12
|
syl5bi |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 < 5 → 𝑃 ≤ 4 ) ) |
14 |
13
|
imp |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → 𝑃 ≤ 4 ) |
15 |
|
elfz2nn0 |
⊢ ( 𝑃 ∈ ( 0 ... 4 ) ↔ ( 𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 𝑃 ≤ 4 ) ) |
16 |
3 5 14 15
|
syl3anbrc |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → 𝑃 ∈ ( 0 ... 4 ) ) |
17 |
|
fz0to4untppr |
⊢ ( 0 ... 4 ) = ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) |
18 |
17
|
eleq2i |
⊢ ( 𝑃 ∈ ( 0 ... 4 ) ↔ 𝑃 ∈ ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) ) |
19 |
|
elun |
⊢ ( 𝑃 ∈ ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) ↔ ( 𝑃 ∈ { 0 , 1 , 2 } ∨ 𝑃 ∈ { 3 , 4 } ) ) |
20 |
|
eltpi |
⊢ ( 𝑃 ∈ { 0 , 1 , 2 } → ( 𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2 ) ) |
21 |
|
nnne0 |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ≠ 0 ) |
22 |
|
eqneqall |
⊢ ( 𝑃 = 0 → ( 𝑃 ≠ 0 → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
23 |
22
|
com12 |
⊢ ( 𝑃 ≠ 0 → ( 𝑃 = 0 → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
24 |
1 21 23
|
3syl |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 = 0 → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
25 |
24
|
com12 |
⊢ ( 𝑃 = 0 → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
26 |
|
eleq1 |
⊢ ( 𝑃 = 1 → ( 𝑃 ∈ ℙ ↔ 1 ∈ ℙ ) ) |
27 |
|
1nprm |
⊢ ¬ 1 ∈ ℙ |
28 |
27
|
pm2.21i |
⊢ ( 1 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) |
29 |
26 28
|
syl6bi |
⊢ ( 𝑃 = 1 → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
30 |
|
orc |
⊢ ( 𝑃 = 2 → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) |
31 |
30
|
a1d |
⊢ ( 𝑃 = 2 → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
32 |
25 29 31
|
3jaoi |
⊢ ( ( 𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
33 |
20 32
|
syl |
⊢ ( 𝑃 ∈ { 0 , 1 , 2 } → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
34 |
|
elpri |
⊢ ( 𝑃 ∈ { 3 , 4 } → ( 𝑃 = 3 ∨ 𝑃 = 4 ) ) |
35 |
|
olc |
⊢ ( 𝑃 = 3 → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) |
36 |
35
|
a1d |
⊢ ( 𝑃 = 3 → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
37 |
|
eleq1 |
⊢ ( 𝑃 = 4 → ( 𝑃 ∈ ℙ ↔ 4 ∈ ℙ ) ) |
38 |
|
4nprm |
⊢ ¬ 4 ∈ ℙ |
39 |
38
|
pm2.21i |
⊢ ( 4 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) |
40 |
37 39
|
syl6bi |
⊢ ( 𝑃 = 4 → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
41 |
36 40
|
jaoi |
⊢ ( ( 𝑃 = 3 ∨ 𝑃 = 4 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
42 |
34 41
|
syl |
⊢ ( 𝑃 ∈ { 3 , 4 } → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
43 |
33 42
|
jaoi |
⊢ ( ( 𝑃 ∈ { 0 , 1 , 2 } ∨ 𝑃 ∈ { 3 , 4 } ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
44 |
19 43
|
sylbi |
⊢ ( 𝑃 ∈ ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
45 |
44
|
com12 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∈ ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → ( 𝑃 ∈ ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
47 |
18 46
|
syl5bi |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → ( 𝑃 ∈ ( 0 ... 4 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
48 |
16 47
|
mpd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) |