Step |
Hyp |
Ref |
Expression |
1 |
|
2nn |
⊢ 2 ∈ ℕ |
2 |
|
dvdsprime |
⊢ ( ( 𝑃 ∈ ℙ ∧ 2 ∈ ℕ ) → ( 2 ∥ 𝑃 ↔ ( 2 = 𝑃 ∨ 2 = 1 ) ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝑃 ∈ ℙ → ( 2 ∥ 𝑃 ↔ ( 2 = 𝑃 ∨ 2 = 1 ) ) ) |
4 |
|
eqcom |
⊢ ( 2 = 𝑃 ↔ 𝑃 = 2 ) |
5 |
4
|
biimpi |
⊢ ( 2 = 𝑃 → 𝑃 = 2 ) |
6 |
|
1ne2 |
⊢ 1 ≠ 2 |
7 |
|
necom |
⊢ ( 1 ≠ 2 ↔ 2 ≠ 1 ) |
8 |
|
eqneqall |
⊢ ( 2 = 1 → ( 2 ≠ 1 → 𝑃 = 2 ) ) |
9 |
8
|
com12 |
⊢ ( 2 ≠ 1 → ( 2 = 1 → 𝑃 = 2 ) ) |
10 |
7 9
|
sylbi |
⊢ ( 1 ≠ 2 → ( 2 = 1 → 𝑃 = 2 ) ) |
11 |
6 10
|
ax-mp |
⊢ ( 2 = 1 → 𝑃 = 2 ) |
12 |
5 11
|
jaoi |
⊢ ( ( 2 = 𝑃 ∨ 2 = 1 ) → 𝑃 = 2 ) |
13 |
3 12
|
syl6bi |
⊢ ( 𝑃 ∈ ℙ → ( 2 ∥ 𝑃 → 𝑃 = 2 ) ) |
14 |
13
|
con3d |
⊢ ( 𝑃 ∈ ℙ → ( ¬ 𝑃 = 2 → ¬ 2 ∥ 𝑃 ) ) |
15 |
14
|
orrd |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ ¬ 2 ∥ 𝑃 ) ) |