Step |
Hyp |
Ref |
Expression |
1 |
|
cygctb.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
1nprm |
⊢ ¬ 1 ∈ ℙ |
3 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ 𝐵 ⊆ { ( 0g ‘ 𝐺 ) } ) → 𝐵 ⊆ { ( 0g ‘ 𝐺 ) } ) |
4 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
5 |
1 4
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
6 |
5
|
snssd |
⊢ ( 𝐺 ∈ Grp → { ( 0g ‘ 𝐺 ) } ⊆ 𝐵 ) |
7 |
6
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ 𝐵 ⊆ { ( 0g ‘ 𝐺 ) } ) → { ( 0g ‘ 𝐺 ) } ⊆ 𝐵 ) |
8 |
3 7
|
eqssd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ 𝐵 ⊆ { ( 0g ‘ 𝐺 ) } ) → 𝐵 = { ( 0g ‘ 𝐺 ) } ) |
9 |
8
|
fveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ 𝐵 ⊆ { ( 0g ‘ 𝐺 ) } ) → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) ) |
10 |
|
fvex |
⊢ ( 0g ‘ 𝐺 ) ∈ V |
11 |
|
hashsng |
⊢ ( ( 0g ‘ 𝐺 ) ∈ V → ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) = 1 ) |
12 |
10 11
|
ax-mp |
⊢ ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) = 1 |
13 |
9 12
|
eqtrdi |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ 𝐵 ⊆ { ( 0g ‘ 𝐺 ) } ) → ( ♯ ‘ 𝐵 ) = 1 ) |
14 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ 𝐵 ⊆ { ( 0g ‘ 𝐺 ) } ) → ( ♯ ‘ 𝐵 ) ∈ ℙ ) |
15 |
13 14
|
eqeltrrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ 𝐵 ⊆ { ( 0g ‘ 𝐺 ) } ) → 1 ∈ ℙ ) |
16 |
15
|
ex |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) → ( 𝐵 ⊆ { ( 0g ‘ 𝐺 ) } → 1 ∈ ℙ ) ) |
17 |
2 16
|
mtoi |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) → ¬ 𝐵 ⊆ { ( 0g ‘ 𝐺 ) } ) |
18 |
|
nss |
⊢ ( ¬ 𝐵 ⊆ { ( 0g ‘ 𝐺 ) } ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) |
19 |
17 18
|
sylib |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) |
20 |
|
eqid |
⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) |
21 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) → 𝐺 ∈ Grp ) |
22 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) → 𝑥 ∈ 𝐵 ) |
23 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) → ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) |
24 |
20 4 1
|
odeq1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 1 ↔ 𝑥 = ( 0g ‘ 𝐺 ) ) ) |
25 |
21 22 24
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 1 ↔ 𝑥 = ( 0g ‘ 𝐺 ) ) ) |
26 |
|
velsn |
⊢ ( 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ↔ 𝑥 = ( 0g ‘ 𝐺 ) ) |
27 |
25 26
|
bitr4di |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 1 ↔ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) |
28 |
23 27
|
mtbird |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) → ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 1 ) |
29 |
|
prmnn |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℙ → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
30 |
29
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
31 |
30
|
nnnn0d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
32 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
33 |
|
hashclb |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) ) |
34 |
32 33
|
ax-mp |
⊢ ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
35 |
31 34
|
sylibr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) → 𝐵 ∈ Fin ) |
36 |
1 20
|
oddvds2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ) |
37 |
21 35 22 36
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ) |
38 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) → ( ♯ ‘ 𝐵 ) ∈ ℙ ) |
39 |
1 20
|
odcl2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) |
40 |
21 35 22 39
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) |
41 |
|
dvdsprime |
⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℙ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ↔ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ∨ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 1 ) ) ) |
42 |
38 40 41
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ↔ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ∨ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 1 ) ) ) |
43 |
37 42
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ∨ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 1 ) ) |
44 |
43
|
ord |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) → ( ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 1 ) ) |
45 |
28 44
|
mt3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) |
46 |
1 20 21 22 45
|
iscygodd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) → 𝐺 ∈ CycGrp ) |
47 |
19 46
|
exlimddv |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) → 𝐺 ∈ CycGrp ) |