Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑚 = 1 → ( 𝐴 ↑ 𝑚 ) = ( 𝐴 ↑ 1 ) ) |
2 |
1
|
breq2d |
⊢ ( 𝑚 = 1 → ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ ( 𝐴 ↑ 1 ) ) ) |
3 |
2
|
bibi1d |
⊢ ( 𝑚 = 1 → ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ 𝐴 ) ↔ ( 𝑃 ∥ ( 𝐴 ↑ 1 ) ↔ 𝑃 ∥ 𝐴 ) ) ) |
4 |
3
|
imbi2d |
⊢ ( 𝑚 = 1 → ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ 𝐴 ) ) ↔ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 1 ) ↔ 𝑃 ∥ 𝐴 ) ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐴 ↑ 𝑚 ) = ( 𝐴 ↑ 𝑘 ) ) |
6 |
5
|
breq2d |
⊢ ( 𝑚 = 𝑘 → ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ) ) |
7 |
6
|
bibi1d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ 𝐴 ) ↔ ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ↔ 𝑃 ∥ 𝐴 ) ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑚 = 𝑘 → ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ 𝐴 ) ) ↔ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ↔ 𝑃 ∥ 𝐴 ) ) ) ) |
9 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝐴 ↑ 𝑚 ) = ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) |
10 |
9
|
breq2d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) |
11 |
10
|
bibi1d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ 𝐴 ) ↔ ( 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ↔ 𝑃 ∥ 𝐴 ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ 𝐴 ) ) ↔ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ↔ 𝑃 ∥ 𝐴 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑚 = 𝑁 → ( 𝐴 ↑ 𝑚 ) = ( 𝐴 ↑ 𝑁 ) ) |
14 |
13
|
breq2d |
⊢ ( 𝑚 = 𝑁 → ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ ( 𝐴 ↑ 𝑁 ) ) ) |
15 |
14
|
bibi1d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ 𝐴 ) ↔ ( 𝑃 ∥ ( 𝐴 ↑ 𝑁 ) ↔ 𝑃 ∥ 𝐴 ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑚 = 𝑁 → ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑚 ) ↔ 𝑃 ∥ 𝐴 ) ) ↔ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑁 ) ↔ 𝑃 ∥ 𝐴 ) ) ) ) |
17 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
18 |
17
|
adantl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
19 |
18
|
exp1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝐴 ↑ 1 ) = 𝐴 ) |
20 |
19
|
breq2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 1 ) ↔ 𝑃 ∥ 𝐴 ) ) |
21 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
22 |
|
expp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
23 |
18 21 22
|
syl2an |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
24 |
23
|
breq2d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ↔ 𝑃 ∥ ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) ) |
25 |
|
simpll |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) ∧ 𝑘 ∈ ℕ ) → 𝑃 ∈ ℙ ) |
26 |
|
simpr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
27 |
|
zexpcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℤ ) |
28 |
26 21 27
|
syl2an |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) ∈ ℤ ) |
29 |
|
simplr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
30 |
|
euclemma |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ↑ 𝑘 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ↔ ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ∨ 𝑃 ∥ 𝐴 ) ) ) |
31 |
25 28 29 30
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ∥ ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ↔ ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ∨ 𝑃 ∥ 𝐴 ) ) ) |
32 |
24 31
|
bitrd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ↔ ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ∨ 𝑃 ∥ 𝐴 ) ) ) |
33 |
|
orbi1 |
⊢ ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ↔ 𝑃 ∥ 𝐴 ) → ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ∨ 𝑃 ∥ 𝐴 ) ↔ ( 𝑃 ∥ 𝐴 ∨ 𝑃 ∥ 𝐴 ) ) ) |
34 |
|
oridm |
⊢ ( ( 𝑃 ∥ 𝐴 ∨ 𝑃 ∥ 𝐴 ) ↔ 𝑃 ∥ 𝐴 ) |
35 |
33 34
|
bitrdi |
⊢ ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ↔ 𝑃 ∥ 𝐴 ) → ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ∨ 𝑃 ∥ 𝐴 ) ↔ 𝑃 ∥ 𝐴 ) ) |
36 |
35
|
bibi2d |
⊢ ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ↔ 𝑃 ∥ 𝐴 ) → ( ( 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ↔ ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ∨ 𝑃 ∥ 𝐴 ) ) ↔ ( 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ↔ 𝑃 ∥ 𝐴 ) ) ) |
37 |
32 36
|
syl5ibcom |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ↔ 𝑃 ∥ 𝐴 ) → ( 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ↔ 𝑃 ∥ 𝐴 ) ) ) |
38 |
37
|
expcom |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ↔ 𝑃 ∥ 𝐴 ) → ( 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ↔ 𝑃 ∥ 𝐴 ) ) ) ) |
39 |
38
|
a2d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑘 ) ↔ 𝑃 ∥ 𝐴 ) ) → ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ↔ 𝑃 ∥ 𝐴 ) ) ) ) |
40 |
4 8 12 16 20 39
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑁 ) ↔ 𝑃 ∥ 𝐴 ) ) ) |
41 |
40
|
impcom |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑁 ) ↔ 𝑃 ∥ 𝐴 ) ) |
42 |
41
|
3impa |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ ( 𝐴 ↑ 𝑁 ) ↔ 𝑃 ∥ 𝐴 ) ) |