Metamath Proof Explorer


Theorem prmdvdsexpb

Description: A prime divides a positive power of another iff they are equal. (Contributed by Paul Chapman, 30-Nov-2012) (Revised by Mario Carneiro, 24-Feb-2014)

Ref Expression
Assertion prmdvdsexpb ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ ( 𝑄𝑁 ) ↔ 𝑃 = 𝑄 ) )

Proof

Step Hyp Ref Expression
1 prmz ( 𝑄 ∈ ℙ → 𝑄 ∈ ℤ )
2 prmdvdsexp ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ ( 𝑄𝑁 ) ↔ 𝑃𝑄 ) )
3 1 2 syl3an2 ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ ( 𝑄𝑁 ) ↔ 𝑃𝑄 ) )
4 prmuz2 ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ ‘ 2 ) )
5 dvdsprm ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑄 ∈ ℙ ) → ( 𝑃𝑄𝑃 = 𝑄 ) )
6 4 5 sylan ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → ( 𝑃𝑄𝑃 = 𝑄 ) )
7 6 3adant3 ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃𝑄𝑃 = 𝑄 ) )
8 3 7 bitrd ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ ( 𝑄𝑁 ) ↔ 𝑃 = 𝑄 ) )