Description: A prime divides a positive power of another iff they are equal. (Contributed by Paul Chapman, 30-Nov-2012) (Revised by Mario Carneiro, 24-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmdvdsexpb | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ ( 𝑄 ↑ 𝑁 ) ↔ 𝑃 = 𝑄 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmz | ⊢ ( 𝑄 ∈ ℙ → 𝑄 ∈ ℤ ) | |
| 2 | prmdvdsexp | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ ( 𝑄 ↑ 𝑁 ) ↔ 𝑃 ∥ 𝑄 ) ) | |
| 3 | 1 2 | syl3an2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ ( 𝑄 ↑ 𝑁 ) ↔ 𝑃 ∥ 𝑄 ) ) |
| 4 | prmuz2 | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 5 | dvdsprm | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑄 ∈ ℙ ) → ( 𝑃 ∥ 𝑄 ↔ 𝑃 = 𝑄 ) ) | |
| 6 | 4 5 | sylan | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → ( 𝑃 ∥ 𝑄 ↔ 𝑃 = 𝑄 ) ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ 𝑄 ↔ 𝑃 = 𝑄 ) ) |
| 8 | 3 7 | bitrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ ( 𝑄 ↑ 𝑁 ) ↔ 𝑃 = 𝑄 ) ) |