Metamath Proof Explorer


Theorem prmdvdsfi

Description: The set of prime divisors of a number is a finite set. (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion prmdvdsfi ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ∈ Fin )

Proof

Step Hyp Ref Expression
1 fzfi ( 1 ... 𝐴 ) ∈ Fin
2 prmssnn ℙ ⊆ ℕ
3 rabss2 ( ℙ ⊆ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝𝐴 } )
4 2 3 ax-mp { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝𝐴 }
5 dvdsssfz1 ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝𝐴 } ⊆ ( 1 ... 𝐴 ) )
6 4 5 sstrid ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ⊆ ( 1 ... 𝐴 ) )
7 ssfi ( ( ( 1 ... 𝐴 ) ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ⊆ ( 1 ... 𝐴 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ∈ Fin )
8 1 6 7 sylancr ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ∈ Fin )