Metamath Proof Explorer


Theorem prmdvdsfz

Description: Each integer greater than 1 and less then or equal to a fixed number is divisible by a prime less then or equal to this fixed number. (Contributed by AV, 15-Aug-2020)

Ref Expression
Assertion prmdvdsfz ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ∃ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝𝐼 ) )

Proof

Step Hyp Ref Expression
1 elfzuz ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ( ℤ ‘ 2 ) )
2 1 adantl ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ( ℤ ‘ 2 ) )
3 exprmfct ( 𝐼 ∈ ( ℤ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝𝐼 )
4 2 3 syl ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ∃ 𝑝 ∈ ℙ 𝑝𝐼 )
5 prmz ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ )
6 eluz2nn ( 𝐼 ∈ ( ℤ ‘ 2 ) → 𝐼 ∈ ℕ )
7 1 6 syl ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℕ )
8 7 adantl ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ℕ )
9 dvdsle ( ( 𝑝 ∈ ℤ ∧ 𝐼 ∈ ℕ ) → ( 𝑝𝐼𝑝𝐼 ) )
10 5 8 9 syl2anr ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝𝐼𝑝𝐼 ) )
11 elfzle2 ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼𝑁 )
12 11 ad2antlr ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐼𝑁 )
13 5 zred ( 𝑝 ∈ ℙ → 𝑝 ∈ ℝ )
14 13 adantl ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℝ )
15 elfzelz ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℤ )
16 15 zred ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℝ )
17 16 ad2antlr ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐼 ∈ ℝ )
18 nnre ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ )
19 18 ad2antrr ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑁 ∈ ℝ )
20 letr ( ( 𝑝 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑝𝐼𝐼𝑁 ) → 𝑝𝑁 ) )
21 14 17 19 20 syl3anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝𝐼𝐼𝑁 ) → 𝑝𝑁 ) )
22 12 21 mpan2d ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝𝐼𝑝𝑁 ) )
23 10 22 syld ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝𝐼𝑝𝑁 ) )
24 23 ancrd ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝𝐼 → ( 𝑝𝑁𝑝𝐼 ) ) )
25 24 reximdva ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( ∃ 𝑝 ∈ ℙ 𝑝𝐼 → ∃ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝𝐼 ) ) )
26 4 25 mpd ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ∃ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝𝐼 ) )