Step |
Hyp |
Ref |
Expression |
1 |
|
elfzuz |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ( ℤ≥ ‘ 2 ) ) |
2 |
1
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ( ℤ≥ ‘ 2 ) ) |
3 |
|
exprmfct |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝐼 ) |
4 |
2 3
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝐼 ) |
5 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
6 |
|
eluz2nn |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 2 ) → 𝐼 ∈ ℕ ) |
7 |
1 6
|
syl |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℕ ) |
8 |
7
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ℕ ) |
9 |
|
dvdsle |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝐼 ∈ ℕ ) → ( 𝑝 ∥ 𝐼 → 𝑝 ≤ 𝐼 ) ) |
10 |
5 8 9
|
syl2anr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝐼 → 𝑝 ≤ 𝐼 ) ) |
11 |
|
elfzle2 |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ≤ 𝑁 ) |
12 |
11
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐼 ≤ 𝑁 ) |
13 |
5
|
zred |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℝ ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℝ ) |
15 |
|
elfzelz |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℤ ) |
16 |
15
|
zred |
⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℝ ) |
17 |
16
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐼 ∈ ℝ ) |
18 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑁 ∈ ℝ ) |
20 |
|
letr |
⊢ ( ( 𝑝 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑝 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁 ) → 𝑝 ≤ 𝑁 ) ) |
21 |
14 17 19 20
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁 ) → 𝑝 ≤ 𝑁 ) ) |
22 |
12 21
|
mpan2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ≤ 𝐼 → 𝑝 ≤ 𝑁 ) ) |
23 |
10 22
|
syld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝐼 → 𝑝 ≤ 𝑁 ) ) |
24 |
23
|
ancrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝐼 → ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) ) ) |
25 |
24
|
reximdva |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝐼 → ∃ 𝑝 ∈ ℙ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) ) ) |
26 |
4 25
|
mpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ∃ 𝑝 ∈ ℙ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) ) |