Step |
Hyp |
Ref |
Expression |
1 |
|
prmdvdsncoprmbd.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
2 |
|
prmdvdsncoprmbd.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
3 |
|
prmuz2 |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
4 |
3
|
a1i |
⊢ ( 𝜑 → ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) ) |
5 |
4
|
anim1d |
⊢ ( 𝜑 → ( ( 𝑝 ∈ ℙ ∧ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) → ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) ) ) |
6 |
5
|
reximdv2 |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) → ∃ 𝑝 ∈ ( ℤ≥ ‘ 2 ) ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) ) |
7 |
|
breq1 |
⊢ ( 𝑝 = 𝑖 → ( 𝑝 ∥ 𝐴 ↔ 𝑖 ∥ 𝐴 ) ) |
8 |
|
breq1 |
⊢ ( 𝑝 = 𝑖 → ( 𝑝 ∥ 𝐵 ↔ 𝑖 ∥ 𝐵 ) ) |
9 |
7 8
|
anbi12d |
⊢ ( 𝑝 = 𝑖 → ( ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ↔ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) |
10 |
9
|
cbvrexvw |
⊢ ( ∃ 𝑝 ∈ ( ℤ≥ ‘ 2 ) ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ↔ ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) |
11 |
6 10
|
syl6ib |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) → ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) |
12 |
|
exprmfct |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑖 ) |
13 |
12
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑖 ) |
14 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
15 |
14
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝑝 ∈ ℕ ) |
16 |
15
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝑝 ∈ ℤ ) |
17 |
|
eluzelz |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) → 𝑖 ∈ ℤ ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ∧ 𝑝 ∥ 𝑖 ) → 𝑖 ∈ ℤ ) |
19 |
18
|
ad4ant24 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝑖 ∈ ℤ ) |
20 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝐴 ∈ ℕ ) |
21 |
20
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝐴 ∈ ℤ ) |
22 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝑝 ∥ 𝑖 ) |
23 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) → 𝑖 ∥ 𝐴 ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝑖 ∥ 𝐴 ) |
25 |
16 19 21 22 24
|
dvdstrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝑝 ∥ 𝐴 ) |
26 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝐵 ∈ ℕ ) |
27 |
26
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝐵 ∈ ℤ ) |
28 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) → 𝑖 ∥ 𝐵 ) |
29 |
28
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝑖 ∥ 𝐵 ) |
30 |
16 19 27 22 29
|
dvdstrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝑝 ∥ 𝐵 ) |
31 |
25 30
|
jca |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) |
32 |
31
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝑖 → ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) ) |
33 |
32
|
reximdva |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑖 → ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) ) |
34 |
13 33
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) → ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) |
35 |
34
|
rexlimdvaa |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) ) |
36 |
11 35
|
impbid |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ↔ ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) |
37 |
|
ncoprmgcdne1b |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ↔ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
38 |
1 2 37
|
syl2anc |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ↔ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
39 |
36 38
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ↔ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |