| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
| 2 |
|
diffi |
⊢ ( ( 1 ... 𝑁 ) ∈ Fin → ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ∈ Fin ) |
| 3 |
1 2
|
mp1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ∈ Fin ) |
| 4 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) → 𝑘 ∈ ( 1 ... 𝑁 ) ) |
| 5 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℤ ) |
| 6 |
4 5
|
syl |
⊢ ( 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) → 𝑘 ∈ ℤ ) |
| 7 |
|
1zzd |
⊢ ( 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) → 1 ∈ ℤ ) |
| 8 |
6 7
|
ifcld |
⊢ ( 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℤ ) |
| 9 |
8
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) ∧ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℤ ) |
| 10 |
3 9
|
fprodzcl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℤ ) |
| 11 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
| 13 |
12
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → 𝑝 ∈ ℤ ) |
| 14 |
|
dvdsmul2 |
⊢ ( ( ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℤ ∧ 𝑝 ∈ ℤ ) → 𝑝 ∥ ( ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) · 𝑝 ) ) |
| 15 |
10 13 14
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → 𝑝 ∥ ( ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) · 𝑝 ) ) |
| 16 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 17 |
|
prmoval |
⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
| 18 |
16 17
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( #p ‘ 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
| 19 |
18
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( #p ‘ 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
| 20 |
19
|
breq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( 𝑝 ∥ ( #p ‘ 𝑁 ) ↔ 𝑝 ∥ ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) ) |
| 21 |
|
neldifsnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ¬ 𝑝 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ) |
| 22 |
|
disjsn |
⊢ ( ( ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ∩ { 𝑝 } ) = ∅ ↔ ¬ 𝑝 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ) |
| 23 |
21 22
|
sylibr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ∩ { 𝑝 } ) = ∅ ) |
| 24 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℕ ) |
| 26 |
25
|
anim1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝑁 ) ) |
| 27 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 28 |
|
fznn |
⊢ ( 𝑁 ∈ ℤ → ( 𝑝 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝑁 ) ) ) |
| 29 |
27 28
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑝 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝑁 ) ) ) |
| 30 |
29
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( 𝑝 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝑁 ) ) ) |
| 31 |
26 30
|
mpbird |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → 𝑝 ∈ ( 1 ... 𝑁 ) ) |
| 32 |
|
difsnid |
⊢ ( 𝑝 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ∪ { 𝑝 } ) = ( 1 ... 𝑁 ) ) |
| 33 |
32
|
eqcomd |
⊢ ( 𝑝 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ∪ { 𝑝 } ) ) |
| 34 |
31 33
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( 1 ... 𝑁 ) = ( ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ∪ { 𝑝 } ) ) |
| 35 |
|
fzfid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( 1 ... 𝑁 ) ∈ Fin ) |
| 36 |
|
1zzd |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 1 ∈ ℤ ) |
| 37 |
5 36
|
ifcld |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℤ ) |
| 38 |
37
|
zcnd |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℂ ) |
| 39 |
38
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℂ ) |
| 40 |
23 34 35 39
|
fprodsplit |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = ( ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) · ∏ 𝑘 ∈ { 𝑝 } if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) ) |
| 41 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → 𝑝 ∈ ℙ ) |
| 42 |
25
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → 𝑝 ∈ ℕ ) |
| 43 |
42
|
nncnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → 𝑝 ∈ ℂ ) |
| 44 |
|
1cnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → 1 ∈ ℂ ) |
| 45 |
43 44
|
ifcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → if ( 𝑝 ∈ ℙ , 𝑝 , 1 ) ∈ ℂ ) |
| 46 |
|
eleq1w |
⊢ ( 𝑘 = 𝑝 → ( 𝑘 ∈ ℙ ↔ 𝑝 ∈ ℙ ) ) |
| 47 |
|
id |
⊢ ( 𝑘 = 𝑝 → 𝑘 = 𝑝 ) |
| 48 |
46 47
|
ifbieq1d |
⊢ ( 𝑘 = 𝑝 → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = if ( 𝑝 ∈ ℙ , 𝑝 , 1 ) ) |
| 49 |
48
|
prodsn |
⊢ ( ( 𝑝 ∈ ℙ ∧ if ( 𝑝 ∈ ℙ , 𝑝 , 1 ) ∈ ℂ ) → ∏ 𝑘 ∈ { 𝑝 } if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = if ( 𝑝 ∈ ℙ , 𝑝 , 1 ) ) |
| 50 |
41 45 49
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ∏ 𝑘 ∈ { 𝑝 } if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = if ( 𝑝 ∈ ℙ , 𝑝 , 1 ) ) |
| 51 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) |
| 52 |
51
|
iftrued |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → if ( 𝑝 ∈ ℙ , 𝑝 , 1 ) = 𝑝 ) |
| 53 |
52
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → if ( 𝑝 ∈ ℙ , 𝑝 , 1 ) = 𝑝 ) |
| 54 |
50 53
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ∏ 𝑘 ∈ { 𝑝 } if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 𝑝 ) |
| 55 |
54
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) · ∏ 𝑘 ∈ { 𝑝 } if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) = ( ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) · 𝑝 ) ) |
| 56 |
40 55
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = ( ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) · 𝑝 ) ) |
| 57 |
56
|
breq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( 𝑝 ∥ ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ↔ 𝑝 ∥ ( ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) · 𝑝 ) ) ) |
| 58 |
20 57
|
bitrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( 𝑝 ∥ ( #p ‘ 𝑁 ) ↔ 𝑝 ∥ ( ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) · 𝑝 ) ) ) |
| 59 |
15 58
|
mpbird |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → 𝑝 ∥ ( #p ‘ 𝑁 ) ) |
| 60 |
59
|
ex |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ≤ 𝑁 → 𝑝 ∥ ( #p ‘ 𝑁 ) ) ) |
| 61 |
60
|
ralrimiva |
⊢ ( 𝑁 ∈ ℕ → ∀ 𝑝 ∈ ℙ ( 𝑝 ≤ 𝑁 → 𝑝 ∥ ( #p ‘ 𝑁 ) ) ) |