Metamath Proof Explorer


Theorem prmdvdssqOLD

Description: Obsolete version of prmdvdssq as of 21-Aug-2024. (Contributed by Scott Fenton, 8-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion prmdvdssqOLD ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ) → ( 𝑃𝑀𝑃 ∥ ( 𝑀 ↑ 2 ) ) )

Proof

Step Hyp Ref Expression
1 zcn ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ )
2 1 sqvald ( 𝑀 ∈ ℤ → ( 𝑀 ↑ 2 ) = ( 𝑀 · 𝑀 ) )
3 2 breq2d ( 𝑀 ∈ ℤ → ( 𝑃 ∥ ( 𝑀 ↑ 2 ) ↔ 𝑃 ∥ ( 𝑀 · 𝑀 ) ) )
4 3 adantl ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑀 ↑ 2 ) ↔ 𝑃 ∥ ( 𝑀 · 𝑀 ) ) )
5 euclemma ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑀 · 𝑀 ) ↔ ( 𝑃𝑀𝑃𝑀 ) ) )
6 5 3anidm23 ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑀 · 𝑀 ) ↔ ( 𝑃𝑀𝑃𝑀 ) ) )
7 oridm ( ( 𝑃𝑀𝑃𝑀 ) ↔ 𝑃𝑀 )
8 6 7 bitrdi ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑀 · 𝑀 ) ↔ 𝑃𝑀 ) )
9 4 8 bitr2d ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ) → ( 𝑃𝑀𝑃 ∥ ( 𝑀 ↑ 2 ) ) )