Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
2 |
1
|
sqvald |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ↑ 2 ) = ( 𝑀 · 𝑀 ) ) |
3 |
2
|
breq2d |
⊢ ( 𝑀 ∈ ℤ → ( 𝑃 ∥ ( 𝑀 ↑ 2 ) ↔ 𝑃 ∥ ( 𝑀 · 𝑀 ) ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑀 ↑ 2 ) ↔ 𝑃 ∥ ( 𝑀 · 𝑀 ) ) ) |
5 |
|
euclemma |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑀 · 𝑀 ) ↔ ( 𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑀 ) ) ) |
6 |
5
|
3anidm23 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑀 · 𝑀 ) ↔ ( 𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑀 ) ) ) |
7 |
|
oridm |
⊢ ( ( 𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑀 ) ↔ 𝑃 ∥ 𝑀 ) |
8 |
6 7
|
bitrdi |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑀 · 𝑀 ) ↔ 𝑃 ∥ 𝑀 ) ) |
9 |
4 8
|
bitr2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ) → ( 𝑃 ∥ 𝑀 ↔ 𝑃 ∥ ( 𝑀 ↑ 2 ) ) ) |