Step |
Hyp |
Ref |
Expression |
1 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
2 |
1
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → 𝑃 ∈ ℤ ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑃 ∈ ℤ ) |
4 |
|
simp2l |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑀 ∈ ℕ ) |
5 |
|
iddvdsexp |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) ) |
6 |
3 4 5
|
syl2anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) ) |
7 |
|
breq2 |
⊢ ( ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) → ( 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) ↔ 𝑃 ∥ ( 𝑄 ↑ 𝑁 ) ) ) |
8 |
7
|
3ad2ant3 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → ( 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) ↔ 𝑃 ∥ ( 𝑄 ↑ 𝑁 ) ) ) |
9 |
|
simp1l |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑃 ∈ ℙ ) |
10 |
|
simp1r |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑄 ∈ ℙ ) |
11 |
|
simp2r |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑁 ∈ ℕ ) |
12 |
|
prmdvdsexpb |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ ( 𝑄 ↑ 𝑁 ) ↔ 𝑃 = 𝑄 ) ) |
13 |
9 10 11 12
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → ( 𝑃 ∥ ( 𝑄 ↑ 𝑁 ) ↔ 𝑃 = 𝑄 ) ) |
14 |
8 13
|
bitrd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → ( 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) ↔ 𝑃 = 𝑄 ) ) |
15 |
6 14
|
mpbid |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑃 = 𝑄 ) |
16 |
3
|
zred |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑃 ∈ ℝ ) |
17 |
4
|
nnzd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑀 ∈ ℤ ) |
18 |
11
|
nnzd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑁 ∈ ℤ ) |
19 |
|
prmgt1 |
⊢ ( 𝑃 ∈ ℙ → 1 < 𝑃 ) |
20 |
19
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → 1 < 𝑃 ) |
21 |
20
|
3adant3 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 1 < 𝑃 ) |
22 |
|
simp3 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) |
23 |
15
|
oveq1d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → ( 𝑃 ↑ 𝑁 ) = ( 𝑄 ↑ 𝑁 ) ) |
24 |
22 23
|
eqtr4d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → ( 𝑃 ↑ 𝑀 ) = ( 𝑃 ↑ 𝑁 ) ) |
25 |
16 17 18 21 24
|
expcand |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑀 = 𝑁 ) |
26 |
15 25
|
jca |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → ( 𝑃 = 𝑄 ∧ 𝑀 = 𝑁 ) ) |
27 |
26
|
3expia |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → ( ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) → ( 𝑃 = 𝑄 ∧ 𝑀 = 𝑁 ) ) ) |
28 |
|
oveq12 |
⊢ ( ( 𝑃 = 𝑄 ∧ 𝑀 = 𝑁 ) → ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) |
29 |
27 28
|
impbid1 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → ( ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ↔ ( 𝑃 = 𝑄 ∧ 𝑀 = 𝑁 ) ) ) |