| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → 𝑃 ∈ ℤ ) |
| 3 |
2
|
3ad2ant1 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑃 ∈ ℤ ) |
| 4 |
|
simp2l |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑀 ∈ ℕ ) |
| 5 |
|
iddvdsexp |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) ) |
| 6 |
3 4 5
|
syl2anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) ) |
| 7 |
|
breq2 |
⊢ ( ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) → ( 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) ↔ 𝑃 ∥ ( 𝑄 ↑ 𝑁 ) ) ) |
| 8 |
7
|
3ad2ant3 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → ( 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) ↔ 𝑃 ∥ ( 𝑄 ↑ 𝑁 ) ) ) |
| 9 |
|
simp1l |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑃 ∈ ℙ ) |
| 10 |
|
simp1r |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑄 ∈ ℙ ) |
| 11 |
|
simp2r |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑁 ∈ ℕ ) |
| 12 |
|
prmdvdsexpb |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ ( 𝑄 ↑ 𝑁 ) ↔ 𝑃 = 𝑄 ) ) |
| 13 |
9 10 11 12
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → ( 𝑃 ∥ ( 𝑄 ↑ 𝑁 ) ↔ 𝑃 = 𝑄 ) ) |
| 14 |
8 13
|
bitrd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → ( 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) ↔ 𝑃 = 𝑄 ) ) |
| 15 |
6 14
|
mpbid |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑃 = 𝑄 ) |
| 16 |
3
|
zred |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑃 ∈ ℝ ) |
| 17 |
4
|
nnzd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑀 ∈ ℤ ) |
| 18 |
11
|
nnzd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 19 |
|
prmgt1 |
⊢ ( 𝑃 ∈ ℙ → 1 < 𝑃 ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → 1 < 𝑃 ) |
| 21 |
20
|
3adant3 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 1 < 𝑃 ) |
| 22 |
|
simp3 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) |
| 23 |
15
|
oveq1d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → ( 𝑃 ↑ 𝑁 ) = ( 𝑄 ↑ 𝑁 ) ) |
| 24 |
22 23
|
eqtr4d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → ( 𝑃 ↑ 𝑀 ) = ( 𝑃 ↑ 𝑁 ) ) |
| 25 |
16 17 18 21 24
|
expcand |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → 𝑀 = 𝑁 ) |
| 26 |
15 25
|
jca |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) → ( 𝑃 = 𝑄 ∧ 𝑀 = 𝑁 ) ) |
| 27 |
26
|
3expia |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → ( ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) → ( 𝑃 = 𝑄 ∧ 𝑀 = 𝑁 ) ) ) |
| 28 |
|
oveq12 |
⊢ ( ( 𝑃 = 𝑄 ∧ 𝑀 = 𝑁 ) → ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ) |
| 29 |
27 28
|
impbid1 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → ( ( 𝑃 ↑ 𝑀 ) = ( 𝑄 ↑ 𝑁 ) ↔ ( 𝑃 = 𝑄 ∧ 𝑀 = 𝑁 ) ) ) |