Metamath Proof Explorer


Theorem prmgt1

Description: A prime number is an integer greater than 1. (Contributed by Alexander van der Vekens, 17-May-2018)

Ref Expression
Assertion prmgt1 ( 𝑃 ∈ ℙ → 1 < 𝑃 )

Proof

Step Hyp Ref Expression
1 prmuz2 ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ ‘ 2 ) )
2 eluz2gt1 ( 𝑃 ∈ ( ℤ ‘ 2 ) → 1 < 𝑃 )
3 1 2 syl ( 𝑃 ∈ ℙ → 1 < 𝑃 )