Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Elementary properties
prmind
Metamath Proof Explorer
Description: Perform induction over the multiplicative structure of NN . If a
property ph ( x ) holds for the primes and 1 and is preserved
under multiplication, then it holds for every positive integer.
(Contributed by Mario Carneiro , 20-Jun-2015)
Ref
Expression
Hypotheses
prmind.1
⊢ ( 𝑥 = 1 → ( 𝜑 ↔ 𝜓 ) )
prmind.2
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) )
prmind.3
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜃 ) )
prmind.4
⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → ( 𝜑 ↔ 𝜏 ) )
prmind.5
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜂 ) )
prmind.6
⊢ 𝜓
prmind.7
⊢ ( 𝑥 ∈ ℙ → 𝜑 )
prmind.8
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) )
Assertion
prmind
⊢ ( 𝐴 ∈ ℕ → 𝜂 )
Proof
Step
Hyp
Ref
Expression
1
prmind.1
⊢ ( 𝑥 = 1 → ( 𝜑 ↔ 𝜓 ) )
2
prmind.2
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) )
3
prmind.3
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜃 ) )
4
prmind.4
⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → ( 𝜑 ↔ 𝜏 ) )
5
prmind.5
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜂 ) )
6
prmind.6
⊢ 𝜓
7
prmind.7
⊢ ( 𝑥 ∈ ℙ → 𝜑 )
8
prmind.8
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) )
9
7
adantr
⊢ ( ( 𝑥 ∈ ℙ ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑥 − 1 ) ) 𝜒 ) → 𝜑 )
10
1 2 3 4 5 6 9 8
prmind2
⊢ ( 𝐴 ∈ ℕ → 𝜂 )