Step |
Hyp |
Ref |
Expression |
1 |
|
prmind.1 |
⊢ ( 𝑥 = 1 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
prmind.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
prmind.3 |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜃 ) ) |
4 |
|
prmind.4 |
⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → ( 𝜑 ↔ 𝜏 ) ) |
5 |
|
prmind.5 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜂 ) ) |
6 |
|
prmind.6 |
⊢ 𝜓 |
7 |
|
prmind2.7 |
⊢ ( ( 𝑥 ∈ ℙ ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑥 − 1 ) ) 𝜒 ) → 𝜑 ) |
8 |
|
prmind2.8 |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) |
9 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 1 ... 𝑛 ) = ( 1 ... 1 ) ) |
10 |
9
|
raleqdv |
⊢ ( 𝑛 = 1 → ( ∀ 𝑥 ∈ ( 1 ... 𝑛 ) 𝜑 ↔ ∀ 𝑥 ∈ ( 1 ... 1 ) 𝜑 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 1 ... 𝑛 ) = ( 1 ... 𝑘 ) ) |
12 |
11
|
raleqdv |
⊢ ( 𝑛 = 𝑘 → ( ∀ 𝑥 ∈ ( 1 ... 𝑛 ) 𝜑 ↔ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ) |
13 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 1 ... 𝑛 ) = ( 1 ... ( 𝑘 + 1 ) ) ) |
14 |
13
|
raleqdv |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ∀ 𝑥 ∈ ( 1 ... 𝑛 ) 𝜑 ↔ ∀ 𝑥 ∈ ( 1 ... ( 𝑘 + 1 ) ) 𝜑 ) ) |
15 |
|
oveq2 |
⊢ ( 𝑛 = 𝐴 → ( 1 ... 𝑛 ) = ( 1 ... 𝐴 ) ) |
16 |
15
|
raleqdv |
⊢ ( 𝑛 = 𝐴 → ( ∀ 𝑥 ∈ ( 1 ... 𝑛 ) 𝜑 ↔ ∀ 𝑥 ∈ ( 1 ... 𝐴 ) 𝜑 ) ) |
17 |
|
elfz1eq |
⊢ ( 𝑥 ∈ ( 1 ... 1 ) → 𝑥 = 1 ) |
18 |
17 1
|
syl |
⊢ ( 𝑥 ∈ ( 1 ... 1 ) → ( 𝜑 ↔ 𝜓 ) ) |
19 |
6 18
|
mpbiri |
⊢ ( 𝑥 ∈ ( 1 ... 1 ) → 𝜑 ) |
20 |
19
|
rgen |
⊢ ∀ 𝑥 ∈ ( 1 ... 1 ) 𝜑 |
21 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℕ ) |
23 |
22
|
nncnd |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℂ ) |
24 |
|
elfzuz |
⊢ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) → 𝑦 ∈ ( ℤ≥ ‘ 2 ) ) |
25 |
24
|
ad2antrl |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ( ℤ≥ ‘ 2 ) ) |
26 |
|
eluz2nn |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → 𝑦 ∈ ℕ ) |
27 |
25 26
|
syl |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ℕ ) |
28 |
27
|
nncnd |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ℂ ) |
29 |
27
|
nnne0d |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ≠ 0 ) |
30 |
23 28 29
|
divcan2d |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑦 · ( ( 𝑘 + 1 ) / 𝑦 ) ) = ( 𝑘 + 1 ) ) |
31 |
|
simprr |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ∥ ( 𝑘 + 1 ) ) |
32 |
27
|
nnzd |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ℤ ) |
33 |
22
|
nnzd |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℤ ) |
34 |
|
dvdsval2 |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ ( 𝑘 + 1 ) ∈ ℤ ) → ( 𝑦 ∥ ( 𝑘 + 1 ) ↔ ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℤ ) ) |
35 |
32 29 33 34
|
syl3anc |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑦 ∥ ( 𝑘 + 1 ) ↔ ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℤ ) ) |
36 |
31 35
|
mpbid |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℤ ) |
37 |
28
|
mulid2d |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 1 · 𝑦 ) = 𝑦 ) |
38 |
|
elfzle2 |
⊢ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) → 𝑦 ≤ ( ( 𝑘 + 1 ) − 1 ) ) |
39 |
38
|
ad2antrl |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ≤ ( ( 𝑘 + 1 ) − 1 ) ) |
40 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑘 ∈ ℂ ) |
42 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
43 |
|
pncan |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
44 |
41 42 43
|
sylancl |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
45 |
39 44
|
breqtrd |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ≤ 𝑘 ) |
46 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
47 |
46
|
ad2antrr |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑘 ∈ ℤ ) |
48 |
|
zleltp1 |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑦 ≤ 𝑘 ↔ 𝑦 < ( 𝑘 + 1 ) ) ) |
49 |
32 47 48
|
syl2anc |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑦 ≤ 𝑘 ↔ 𝑦 < ( 𝑘 + 1 ) ) ) |
50 |
45 49
|
mpbid |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 < ( 𝑘 + 1 ) ) |
51 |
37 50
|
eqbrtrd |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 1 · 𝑦 ) < ( 𝑘 + 1 ) ) |
52 |
|
1red |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 1 ∈ ℝ ) |
53 |
22
|
nnred |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
54 |
27
|
nnred |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ℝ ) |
55 |
27
|
nngt0d |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 0 < 𝑦 ) |
56 |
|
ltmuldiv |
⊢ ( ( 1 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ∧ ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) ) → ( ( 1 · 𝑦 ) < ( 𝑘 + 1 ) ↔ 1 < ( ( 𝑘 + 1 ) / 𝑦 ) ) ) |
57 |
52 53 54 55 56
|
syl112anc |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 1 · 𝑦 ) < ( 𝑘 + 1 ) ↔ 1 < ( ( 𝑘 + 1 ) / 𝑦 ) ) ) |
58 |
51 57
|
mpbid |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 1 < ( ( 𝑘 + 1 ) / 𝑦 ) ) |
59 |
|
eluz2b1 |
⊢ ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℤ ∧ 1 < ( ( 𝑘 + 1 ) / 𝑦 ) ) ) |
60 |
36 58 59
|
sylanbrc |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ( ℤ≥ ‘ 2 ) ) |
61 |
|
simplr |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) |
62 |
|
fznn |
⊢ ( 𝑘 ∈ ℤ → ( 𝑦 ∈ ( 1 ... 𝑘 ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑘 ) ) ) |
63 |
47 62
|
syl |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑦 ∈ ( 1 ... 𝑘 ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑘 ) ) ) |
64 |
27 45 63
|
mpbir2and |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ( 1 ... 𝑘 ) ) |
65 |
2 61 64
|
rspcdva |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝜒 ) |
66 |
|
vex |
⊢ 𝑧 ∈ V |
67 |
66 3
|
sbcie |
⊢ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝜃 ) |
68 |
|
dfsbcq |
⊢ ( 𝑧 = ( ( 𝑘 + 1 ) / 𝑦 ) → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ ( ( 𝑘 + 1 ) / 𝑦 ) / 𝑥 ] 𝜑 ) ) |
69 |
67 68
|
bitr3id |
⊢ ( 𝑧 = ( ( 𝑘 + 1 ) / 𝑦 ) → ( 𝜃 ↔ [ ( ( 𝑘 + 1 ) / 𝑦 ) / 𝑥 ] 𝜑 ) ) |
70 |
3
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ↔ ∀ 𝑧 ∈ ( 1 ... 𝑘 ) 𝜃 ) |
71 |
61 70
|
sylib |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ∀ 𝑧 ∈ ( 1 ... 𝑘 ) 𝜃 ) |
72 |
22
|
nnrpd |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℝ+ ) |
73 |
27
|
nnrpd |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ℝ+ ) |
74 |
72 73
|
rpdivcld |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℝ+ ) |
75 |
74
|
rpgt0d |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 0 < ( ( 𝑘 + 1 ) / 𝑦 ) ) |
76 |
|
elnnz |
⊢ ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℕ ↔ ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℤ ∧ 0 < ( ( 𝑘 + 1 ) / 𝑦 ) ) ) |
77 |
36 75 76
|
sylanbrc |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℕ ) |
78 |
22
|
nnne0d |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑘 + 1 ) ≠ 0 ) |
79 |
23 78
|
dividd |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) = 1 ) |
80 |
|
eluz2gt1 |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑦 ) |
81 |
25 80
|
syl |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 1 < 𝑦 ) |
82 |
79 81
|
eqbrtrd |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) < 𝑦 ) |
83 |
22
|
nngt0d |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 0 < ( 𝑘 + 1 ) ) |
84 |
|
ltdiv23 |
⊢ ( ( ( 𝑘 + 1 ) ∈ ℝ ∧ ( ( 𝑘 + 1 ) ∈ ℝ ∧ 0 < ( 𝑘 + 1 ) ) ∧ ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) ) → ( ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) < 𝑦 ↔ ( ( 𝑘 + 1 ) / 𝑦 ) < ( 𝑘 + 1 ) ) ) |
85 |
53 53 83 54 55 84
|
syl122anc |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) < 𝑦 ↔ ( ( 𝑘 + 1 ) / 𝑦 ) < ( 𝑘 + 1 ) ) ) |
86 |
82 85
|
mpbid |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) / 𝑦 ) < ( 𝑘 + 1 ) ) |
87 |
|
zleltp1 |
⊢ ( ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( ( 𝑘 + 1 ) / 𝑦 ) ≤ 𝑘 ↔ ( ( 𝑘 + 1 ) / 𝑦 ) < ( 𝑘 + 1 ) ) ) |
88 |
36 47 87
|
syl2anc |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( ( 𝑘 + 1 ) / 𝑦 ) ≤ 𝑘 ↔ ( ( 𝑘 + 1 ) / 𝑦 ) < ( 𝑘 + 1 ) ) ) |
89 |
86 88
|
mpbird |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) / 𝑦 ) ≤ 𝑘 ) |
90 |
|
fznn |
⊢ ( 𝑘 ∈ ℤ → ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ( 1 ... 𝑘 ) ↔ ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℕ ∧ ( ( 𝑘 + 1 ) / 𝑦 ) ≤ 𝑘 ) ) ) |
91 |
47 90
|
syl |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ( 1 ... 𝑘 ) ↔ ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℕ ∧ ( ( 𝑘 + 1 ) / 𝑦 ) ≤ 𝑘 ) ) ) |
92 |
77 89 91
|
mpbir2and |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ( 1 ... 𝑘 ) ) |
93 |
69 71 92
|
rspcdva |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → [ ( ( 𝑘 + 1 ) / 𝑦 ) / 𝑥 ] 𝜑 ) |
94 |
65 93
|
jca |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝜒 ∧ [ ( ( 𝑘 + 1 ) / 𝑦 ) / 𝑥 ] 𝜑 ) ) |
95 |
69
|
anbi2d |
⊢ ( 𝑧 = ( ( 𝑘 + 1 ) / 𝑦 ) → ( ( 𝜒 ∧ 𝜃 ) ↔ ( 𝜒 ∧ [ ( ( 𝑘 + 1 ) / 𝑦 ) / 𝑥 ] 𝜑 ) ) ) |
96 |
|
ovex |
⊢ ( 𝑦 · 𝑧 ) ∈ V |
97 |
96 4
|
sbcie |
⊢ ( [ ( 𝑦 · 𝑧 ) / 𝑥 ] 𝜑 ↔ 𝜏 ) |
98 |
|
oveq2 |
⊢ ( 𝑧 = ( ( 𝑘 + 1 ) / 𝑦 ) → ( 𝑦 · 𝑧 ) = ( 𝑦 · ( ( 𝑘 + 1 ) / 𝑦 ) ) ) |
99 |
98
|
sbceq1d |
⊢ ( 𝑧 = ( ( 𝑘 + 1 ) / 𝑦 ) → ( [ ( 𝑦 · 𝑧 ) / 𝑥 ] 𝜑 ↔ [ ( 𝑦 · ( ( 𝑘 + 1 ) / 𝑦 ) ) / 𝑥 ] 𝜑 ) ) |
100 |
97 99
|
bitr3id |
⊢ ( 𝑧 = ( ( 𝑘 + 1 ) / 𝑦 ) → ( 𝜏 ↔ [ ( 𝑦 · ( ( 𝑘 + 1 ) / 𝑦 ) ) / 𝑥 ] 𝜑 ) ) |
101 |
95 100
|
imbi12d |
⊢ ( 𝑧 = ( ( 𝑘 + 1 ) / 𝑦 ) → ( ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ↔ ( ( 𝜒 ∧ [ ( ( 𝑘 + 1 ) / 𝑦 ) / 𝑥 ] 𝜑 ) → [ ( 𝑦 · ( ( 𝑘 + 1 ) / 𝑦 ) ) / 𝑥 ] 𝜑 ) ) ) |
102 |
101
|
imbi2d |
⊢ ( 𝑧 = ( ( 𝑘 + 1 ) / 𝑦 ) → ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) ↔ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝜒 ∧ [ ( ( 𝑘 + 1 ) / 𝑦 ) / 𝑥 ] 𝜑 ) → [ ( 𝑦 · ( ( 𝑘 + 1 ) / 𝑦 ) ) / 𝑥 ] 𝜑 ) ) ) ) |
103 |
8
|
expcom |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) ) |
104 |
102 103
|
vtoclga |
⊢ ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ( ℤ≥ ‘ 2 ) → ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝜒 ∧ [ ( ( 𝑘 + 1 ) / 𝑦 ) / 𝑥 ] 𝜑 ) → [ ( 𝑦 · ( ( 𝑘 + 1 ) / 𝑦 ) ) / 𝑥 ] 𝜑 ) ) ) |
105 |
60 25 94 104
|
syl3c |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → [ ( 𝑦 · ( ( 𝑘 + 1 ) / 𝑦 ) ) / 𝑥 ] 𝜑 ) |
106 |
30 105
|
sbceq1dd |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) |
107 |
106
|
rexlimdvaa |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( ∃ 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝑦 ∥ ( 𝑘 + 1 ) → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) |
108 |
|
ralnex |
⊢ ( ∀ 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ¬ 𝑦 ∥ ( 𝑘 + 1 ) ↔ ¬ ∃ 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝑦 ∥ ( 𝑘 + 1 ) ) |
109 |
|
simpl |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → 𝑘 ∈ ℕ ) |
110 |
|
elnnuz |
⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
111 |
109 110
|
sylib |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
112 |
|
eluzp1p1 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
113 |
111 112
|
syl |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
114 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
115 |
114
|
fveq2i |
⊢ ( ℤ≥ ‘ 2 ) = ( ℤ≥ ‘ ( 1 + 1 ) ) |
116 |
113 115
|
eleqtrrdi |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
117 |
|
isprm3 |
⊢ ( ( 𝑘 + 1 ) ∈ ℙ ↔ ( ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ¬ 𝑦 ∥ ( 𝑘 + 1 ) ) ) |
118 |
117
|
baibr |
⊢ ( ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ¬ 𝑦 ∥ ( 𝑘 + 1 ) ↔ ( 𝑘 + 1 ) ∈ ℙ ) ) |
119 |
116 118
|
syl |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( ∀ 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ¬ 𝑦 ∥ ( 𝑘 + 1 ) ↔ ( 𝑘 + 1 ) ∈ ℙ ) ) |
120 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) |
121 |
2
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ↔ ∀ 𝑦 ∈ ( 1 ... 𝑘 ) 𝜒 ) |
122 |
120 121
|
sylib |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ∀ 𝑦 ∈ ( 1 ... 𝑘 ) 𝜒 ) |
123 |
109
|
nncnd |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → 𝑘 ∈ ℂ ) |
124 |
123 42 43
|
sylancl |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
125 |
124
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) = ( 1 ... 𝑘 ) ) |
126 |
125
|
raleqdv |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( ∀ 𝑦 ∈ ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝜒 ↔ ∀ 𝑦 ∈ ( 1 ... 𝑘 ) 𝜒 ) ) |
127 |
122 126
|
mpbird |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ∀ 𝑦 ∈ ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝜒 ) |
128 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑘 + 1 ) |
129 |
|
nfv |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝜒 |
130 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 |
131 |
129 130
|
nfim |
⊢ Ⅎ 𝑥 ( ∀ 𝑦 ∈ ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝜒 → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) |
132 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝑥 − 1 ) = ( ( 𝑘 + 1 ) − 1 ) ) |
133 |
132
|
oveq2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 1 ... ( 𝑥 − 1 ) ) = ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) ) |
134 |
133
|
raleqdv |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑥 − 1 ) ) 𝜒 ↔ ∀ 𝑦 ∈ ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝜒 ) ) |
135 |
|
sbceq1a |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝜑 ↔ [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) |
136 |
134 135
|
imbi12d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( ∀ 𝑦 ∈ ( 1 ... ( 𝑥 − 1 ) ) 𝜒 → 𝜑 ) ↔ ( ∀ 𝑦 ∈ ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝜒 → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) ) |
137 |
7
|
ex |
⊢ ( 𝑥 ∈ ℙ → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑥 − 1 ) ) 𝜒 → 𝜑 ) ) |
138 |
128 131 136 137
|
vtoclgaf |
⊢ ( ( 𝑘 + 1 ) ∈ ℙ → ( ∀ 𝑦 ∈ ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝜒 → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) |
139 |
127 138
|
syl5com |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( ( 𝑘 + 1 ) ∈ ℙ → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) |
140 |
119 139
|
sylbid |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( ∀ 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ¬ 𝑦 ∥ ( 𝑘 + 1 ) → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) |
141 |
108 140
|
syl5bir |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( ¬ ∃ 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝑦 ∥ ( 𝑘 + 1 ) → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) |
142 |
107 141
|
pm2.61d |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) |
143 |
142
|
ex |
⊢ ( 𝑘 ∈ ℕ → ( ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) |
144 |
|
ralsnsg |
⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( ∀ 𝑥 ∈ { ( 𝑘 + 1 ) } 𝜑 ↔ [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) |
145 |
21 144
|
syl |
⊢ ( 𝑘 ∈ ℕ → ( ∀ 𝑥 ∈ { ( 𝑘 + 1 ) } 𝜑 ↔ [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) |
146 |
143 145
|
sylibrd |
⊢ ( 𝑘 ∈ ℕ → ( ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 → ∀ 𝑥 ∈ { ( 𝑘 + 1 ) } 𝜑 ) ) |
147 |
146
|
ancld |
⊢ ( 𝑘 ∈ ℕ → ( ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 → ( ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ∧ ∀ 𝑥 ∈ { ( 𝑘 + 1 ) } 𝜑 ) ) ) |
148 |
|
fzsuc |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... ( 𝑘 + 1 ) ) = ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ) |
149 |
110 148
|
sylbi |
⊢ ( 𝑘 ∈ ℕ → ( 1 ... ( 𝑘 + 1 ) ) = ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ) |
150 |
149
|
raleqdv |
⊢ ( 𝑘 ∈ ℕ → ( ∀ 𝑥 ∈ ( 1 ... ( 𝑘 + 1 ) ) 𝜑 ↔ ∀ 𝑥 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) 𝜑 ) ) |
151 |
|
ralunb |
⊢ ( ∀ 𝑥 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) 𝜑 ↔ ( ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ∧ ∀ 𝑥 ∈ { ( 𝑘 + 1 ) } 𝜑 ) ) |
152 |
150 151
|
bitrdi |
⊢ ( 𝑘 ∈ ℕ → ( ∀ 𝑥 ∈ ( 1 ... ( 𝑘 + 1 ) ) 𝜑 ↔ ( ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ∧ ∀ 𝑥 ∈ { ( 𝑘 + 1 ) } 𝜑 ) ) ) |
153 |
147 152
|
sylibrd |
⊢ ( 𝑘 ∈ ℕ → ( ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 → ∀ 𝑥 ∈ ( 1 ... ( 𝑘 + 1 ) ) 𝜑 ) ) |
154 |
10 12 14 16 20 153
|
nnind |
⊢ ( 𝐴 ∈ ℕ → ∀ 𝑥 ∈ ( 1 ... 𝐴 ) 𝜑 ) |
155 |
|
elfz1end |
⊢ ( 𝐴 ∈ ℕ ↔ 𝐴 ∈ ( 1 ... 𝐴 ) ) |
156 |
155
|
biimpi |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ( 1 ... 𝐴 ) ) |
157 |
5 154 156
|
rspcdva |
⊢ ( 𝐴 ∈ ℕ → 𝜂 ) |