Metamath Proof Explorer


Theorem prminf

Description: There are an infinite number of primes. Theorem 1.7 in ApostolNT p. 16. (Contributed by Paul Chapman, 28-Nov-2012)

Ref Expression
Assertion prminf ℙ ≈ ℕ

Proof

Step Hyp Ref Expression
1 prmssnn ℙ ⊆ ℕ
2 prmunb ( 𝑛 ∈ ℕ → ∃ 𝑝 ∈ ℙ 𝑛 < 𝑝 )
3 2 rgen 𝑛 ∈ ℕ ∃ 𝑝 ∈ ℙ 𝑛 < 𝑝
4 unben ( ( ℙ ⊆ ℕ ∧ ∀ 𝑛 ∈ ℕ ∃ 𝑝 ∈ ℙ 𝑛 < 𝑝 ) → ℙ ≈ ℕ )
5 1 3 4 mp2an ℙ ≈ ℕ