Description: There are an infinite number of primes. Theorem 1.7 in ApostolNT p. 16. (Contributed by Paul Chapman, 28-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | prminf | ⊢ ℙ ≈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmssnn | ⊢ ℙ ⊆ ℕ | |
2 | prmunb | ⊢ ( 𝑛 ∈ ℕ → ∃ 𝑝 ∈ ℙ 𝑛 < 𝑝 ) | |
3 | 2 | rgen | ⊢ ∀ 𝑛 ∈ ℕ ∃ 𝑝 ∈ ℙ 𝑛 < 𝑝 |
4 | unben | ⊢ ( ( ℙ ⊆ ℕ ∧ ∀ 𝑛 ∈ ℕ ∃ 𝑝 ∈ ℙ 𝑛 < 𝑝 ) → ℙ ≈ ℕ ) | |
5 | 1 3 4 | mp2an | ⊢ ℙ ≈ ℕ |