Step |
Hyp |
Ref |
Expression |
1 |
|
prmirred.i |
⊢ 𝐼 = ( Irred ‘ ℤring ) |
2 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
3 |
1 2
|
irredcl |
⊢ ( 𝐴 ∈ 𝐼 → 𝐴 ∈ ℤ ) |
4 |
|
elnn0 |
⊢ ( 𝐴 ∈ ℕ0 ↔ ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) |
5 |
|
zringring |
⊢ ℤring ∈ Ring |
6 |
|
zring0 |
⊢ 0 = ( 0g ‘ ℤring ) |
7 |
1 6
|
irredn0 |
⊢ ( ( ℤring ∈ Ring ∧ 𝐴 ∈ 𝐼 ) → 𝐴 ≠ 0 ) |
8 |
5 7
|
mpan |
⊢ ( 𝐴 ∈ 𝐼 → 𝐴 ≠ 0 ) |
9 |
8
|
necon2bi |
⊢ ( 𝐴 = 0 → ¬ 𝐴 ∈ 𝐼 ) |
10 |
9
|
pm2.21d |
⊢ ( 𝐴 = 0 → ( 𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ ) ) |
11 |
10
|
jao1i |
⊢ ( ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) → ( 𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ ) ) |
12 |
4 11
|
sylbi |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ ) ) |
13 |
|
prmnn |
⊢ ( 𝐴 ∈ ℙ → 𝐴 ∈ ℕ ) |
14 |
13
|
a1i |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℙ → 𝐴 ∈ ℕ ) ) |
15 |
1
|
prmirredlem |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ ) ) |
16 |
15
|
a1i |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℕ → ( 𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ ) ) ) |
17 |
12 14 16
|
pm5.21ndd |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ ) ) |
18 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
19 |
|
nn0ge0 |
⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) |
20 |
18 19
|
absidd |
⊢ ( 𝐴 ∈ ℕ0 → ( abs ‘ 𝐴 ) = 𝐴 ) |
21 |
20
|
eleq1d |
⊢ ( 𝐴 ∈ ℕ0 → ( ( abs ‘ 𝐴 ) ∈ ℙ ↔ 𝐴 ∈ ℙ ) ) |
22 |
17 21
|
bitr4d |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ 𝐼 ↔ ( abs ‘ 𝐴 ) ∈ ℙ ) ) |
23 |
22
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → ( 𝐴 ∈ 𝐼 ↔ ( abs ‘ 𝐴 ) ∈ ℙ ) ) |
24 |
1
|
prmirredlem |
⊢ ( - 𝐴 ∈ ℕ → ( - 𝐴 ∈ 𝐼 ↔ - 𝐴 ∈ ℙ ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℕ ) → ( - 𝐴 ∈ 𝐼 ↔ - 𝐴 ∈ ℙ ) ) |
26 |
|
eqid |
⊢ ( invg ‘ ℤring ) = ( invg ‘ ℤring ) |
27 |
1 26 2
|
irrednegb |
⊢ ( ( ℤring ∈ Ring ∧ 𝐴 ∈ ℤ ) → ( 𝐴 ∈ 𝐼 ↔ ( ( invg ‘ ℤring ) ‘ 𝐴 ) ∈ 𝐼 ) ) |
28 |
5 27
|
mpan |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ∈ 𝐼 ↔ ( ( invg ‘ ℤring ) ‘ 𝐴 ) ∈ 𝐼 ) ) |
29 |
|
zsubrg |
⊢ ℤ ∈ ( SubRing ‘ ℂfld ) |
30 |
|
subrgsubg |
⊢ ( ℤ ∈ ( SubRing ‘ ℂfld ) → ℤ ∈ ( SubGrp ‘ ℂfld ) ) |
31 |
29 30
|
ax-mp |
⊢ ℤ ∈ ( SubGrp ‘ ℂfld ) |
32 |
|
df-zring |
⊢ ℤring = ( ℂfld ↾s ℤ ) |
33 |
|
eqid |
⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) |
34 |
32 33 26
|
subginv |
⊢ ( ( ℤ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐴 ∈ ℤ ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = ( ( invg ‘ ℤring ) ‘ 𝐴 ) ) |
35 |
31 34
|
mpan |
⊢ ( 𝐴 ∈ ℤ → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = ( ( invg ‘ ℤring ) ‘ 𝐴 ) ) |
36 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
37 |
|
cnfldneg |
⊢ ( 𝐴 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = - 𝐴 ) |
38 |
36 37
|
syl |
⊢ ( 𝐴 ∈ ℤ → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = - 𝐴 ) |
39 |
35 38
|
eqtr3d |
⊢ ( 𝐴 ∈ ℤ → ( ( invg ‘ ℤring ) ‘ 𝐴 ) = - 𝐴 ) |
40 |
39
|
eleq1d |
⊢ ( 𝐴 ∈ ℤ → ( ( ( invg ‘ ℤring ) ‘ 𝐴 ) ∈ 𝐼 ↔ - 𝐴 ∈ 𝐼 ) ) |
41 |
28 40
|
bitrd |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ∈ 𝐼 ↔ - 𝐴 ∈ 𝐼 ) ) |
42 |
41
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℕ ) → ( 𝐴 ∈ 𝐼 ↔ - 𝐴 ∈ 𝐼 ) ) |
43 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
44 |
43
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
45 |
|
nnnn0 |
⊢ ( - 𝐴 ∈ ℕ → - 𝐴 ∈ ℕ0 ) |
46 |
45
|
nn0ge0d |
⊢ ( - 𝐴 ∈ ℕ → 0 ≤ - 𝐴 ) |
47 |
46
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℕ ) → 0 ≤ - 𝐴 ) |
48 |
44
|
le0neg1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℕ ) → ( 𝐴 ≤ 0 ↔ 0 ≤ - 𝐴 ) ) |
49 |
47 48
|
mpbird |
⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℕ ) → 𝐴 ≤ 0 ) |
50 |
44 49
|
absnidd |
⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℕ ) → ( abs ‘ 𝐴 ) = - 𝐴 ) |
51 |
50
|
eleq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℕ ) → ( ( abs ‘ 𝐴 ) ∈ ℙ ↔ - 𝐴 ∈ ℙ ) ) |
52 |
25 42 51
|
3bitr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℕ ) → ( 𝐴 ∈ 𝐼 ↔ ( abs ‘ 𝐴 ) ∈ ℙ ) ) |
53 |
52
|
adantrl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) → ( 𝐴 ∈ 𝐼 ↔ ( abs ‘ 𝐴 ) ∈ ℙ ) ) |
54 |
|
elznn0nn |
⊢ ( 𝐴 ∈ ℤ ↔ ( 𝐴 ∈ ℕ0 ∨ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) ) |
55 |
54
|
biimpi |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ∈ ℕ0 ∨ ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℕ ) ) ) |
56 |
23 53 55
|
mpjaodan |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ∈ 𝐼 ↔ ( abs ‘ 𝐴 ) ∈ ℙ ) ) |
57 |
3 56
|
biadanii |
⊢ ( 𝐴 ∈ 𝐼 ↔ ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) ∈ ℙ ) ) |