| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							prmirred.i | 
							⊢ 𝐼  =  ( Irred ‘ ℤring )  | 
						
						
							| 2 | 
							
								
							 | 
							zringbas | 
							⊢ ℤ  =  ( Base ‘ ℤring )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							irredcl | 
							⊢ ( 𝐴  ∈  𝐼  →  𝐴  ∈  ℤ )  | 
						
						
							| 4 | 
							
								
							 | 
							elnn0 | 
							⊢ ( 𝐴  ∈  ℕ0  ↔  ( 𝐴  ∈  ℕ  ∨  𝐴  =  0 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							zringring | 
							⊢ ℤring  ∈  Ring  | 
						
						
							| 6 | 
							
								
							 | 
							zring0 | 
							⊢ 0  =  ( 0g ‘ ℤring )  | 
						
						
							| 7 | 
							
								1 6
							 | 
							irredn0 | 
							⊢ ( ( ℤring  ∈  Ring  ∧  𝐴  ∈  𝐼 )  →  𝐴  ≠  0 )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							mpan | 
							⊢ ( 𝐴  ∈  𝐼  →  𝐴  ≠  0 )  | 
						
						
							| 9 | 
							
								8
							 | 
							necon2bi | 
							⊢ ( 𝐴  =  0  →  ¬  𝐴  ∈  𝐼 )  | 
						
						
							| 10 | 
							
								9
							 | 
							pm2.21d | 
							⊢ ( 𝐴  =  0  →  ( 𝐴  ∈  𝐼  →  𝐴  ∈  ℕ ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							jao1i | 
							⊢ ( ( 𝐴  ∈  ℕ  ∨  𝐴  =  0 )  →  ( 𝐴  ∈  𝐼  →  𝐴  ∈  ℕ ) )  | 
						
						
							| 12 | 
							
								4 11
							 | 
							sylbi | 
							⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐴  ∈  𝐼  →  𝐴  ∈  ℕ ) )  | 
						
						
							| 13 | 
							
								
							 | 
							prmnn | 
							⊢ ( 𝐴  ∈  ℙ  →  𝐴  ∈  ℕ )  | 
						
						
							| 14 | 
							
								13
							 | 
							a1i | 
							⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐴  ∈  ℙ  →  𝐴  ∈  ℕ ) )  | 
						
						
							| 15 | 
							
								1
							 | 
							prmirredlem | 
							⊢ ( 𝐴  ∈  ℕ  →  ( 𝐴  ∈  𝐼  ↔  𝐴  ∈  ℙ ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							a1i | 
							⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐴  ∈  ℕ  →  ( 𝐴  ∈  𝐼  ↔  𝐴  ∈  ℙ ) ) )  | 
						
						
							| 17 | 
							
								12 14 16
							 | 
							pm5.21ndd | 
							⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐴  ∈  𝐼  ↔  𝐴  ∈  ℙ ) )  | 
						
						
							| 18 | 
							
								
							 | 
							nn0re | 
							⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℝ )  | 
						
						
							| 19 | 
							
								
							 | 
							nn0ge0 | 
							⊢ ( 𝐴  ∈  ℕ0  →  0  ≤  𝐴 )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							absidd | 
							⊢ ( 𝐴  ∈  ℕ0  →  ( abs ‘ 𝐴 )  =  𝐴 )  | 
						
						
							| 21 | 
							
								20
							 | 
							eleq1d | 
							⊢ ( 𝐴  ∈  ℕ0  →  ( ( abs ‘ 𝐴 )  ∈  ℙ  ↔  𝐴  ∈  ℙ ) )  | 
						
						
							| 22 | 
							
								17 21
							 | 
							bitr4d | 
							⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐴  ∈  𝐼  ↔  ( abs ‘ 𝐴 )  ∈  ℙ ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐴  ∈  ℕ0 )  →  ( 𝐴  ∈  𝐼  ↔  ( abs ‘ 𝐴 )  ∈  ℙ ) )  | 
						
						
							| 24 | 
							
								1
							 | 
							prmirredlem | 
							⊢ ( - 𝐴  ∈  ℕ  →  ( - 𝐴  ∈  𝐼  ↔  - 𝐴  ∈  ℙ ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  - 𝐴  ∈  ℕ )  →  ( - 𝐴  ∈  𝐼  ↔  - 𝐴  ∈  ℙ ) )  | 
						
						
							| 26 | 
							
								
							 | 
							eqid | 
							⊢ ( invg ‘ ℤring )  =  ( invg ‘ ℤring )  | 
						
						
							| 27 | 
							
								1 26 2
							 | 
							irrednegb | 
							⊢ ( ( ℤring  ∈  Ring  ∧  𝐴  ∈  ℤ )  →  ( 𝐴  ∈  𝐼  ↔  ( ( invg ‘ ℤring ) ‘ 𝐴 )  ∈  𝐼 ) )  | 
						
						
							| 28 | 
							
								5 27
							 | 
							mpan | 
							⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴  ∈  𝐼  ↔  ( ( invg ‘ ℤring ) ‘ 𝐴 )  ∈  𝐼 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							zsubrg | 
							⊢ ℤ  ∈  ( SubRing ‘ ℂfld )  | 
						
						
							| 30 | 
							
								
							 | 
							subrgsubg | 
							⊢ ( ℤ  ∈  ( SubRing ‘ ℂfld )  →  ℤ  ∈  ( SubGrp ‘ ℂfld ) )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							ax-mp | 
							⊢ ℤ  ∈  ( SubGrp ‘ ℂfld )  | 
						
						
							| 32 | 
							
								
							 | 
							df-zring | 
							⊢ ℤring  =  ( ℂfld  ↾s  ℤ )  | 
						
						
							| 33 | 
							
								
							 | 
							eqid | 
							⊢ ( invg ‘ ℂfld )  =  ( invg ‘ ℂfld )  | 
						
						
							| 34 | 
							
								32 33 26
							 | 
							subginv | 
							⊢ ( ( ℤ  ∈  ( SubGrp ‘ ℂfld )  ∧  𝐴  ∈  ℤ )  →  ( ( invg ‘ ℂfld ) ‘ 𝐴 )  =  ( ( invg ‘ ℤring ) ‘ 𝐴 ) )  | 
						
						
							| 35 | 
							
								31 34
							 | 
							mpan | 
							⊢ ( 𝐴  ∈  ℤ  →  ( ( invg ‘ ℂfld ) ‘ 𝐴 )  =  ( ( invg ‘ ℤring ) ‘ 𝐴 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							zcn | 
							⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℂ )  | 
						
						
							| 37 | 
							
								
							 | 
							cnfldneg | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ( invg ‘ ℂfld ) ‘ 𝐴 )  =  - 𝐴 )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							syl | 
							⊢ ( 𝐴  ∈  ℤ  →  ( ( invg ‘ ℂfld ) ‘ 𝐴 )  =  - 𝐴 )  | 
						
						
							| 39 | 
							
								35 38
							 | 
							eqtr3d | 
							⊢ ( 𝐴  ∈  ℤ  →  ( ( invg ‘ ℤring ) ‘ 𝐴 )  =  - 𝐴 )  | 
						
						
							| 40 | 
							
								39
							 | 
							eleq1d | 
							⊢ ( 𝐴  ∈  ℤ  →  ( ( ( invg ‘ ℤring ) ‘ 𝐴 )  ∈  𝐼  ↔  - 𝐴  ∈  𝐼 ) )  | 
						
						
							| 41 | 
							
								28 40
							 | 
							bitrd | 
							⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴  ∈  𝐼  ↔  - 𝐴  ∈  𝐼 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  - 𝐴  ∈  ℕ )  →  ( 𝐴  ∈  𝐼  ↔  - 𝐴  ∈  𝐼 ) )  | 
						
						
							| 43 | 
							
								
							 | 
							zre | 
							⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℝ )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  - 𝐴  ∈  ℕ )  →  𝐴  ∈  ℝ )  | 
						
						
							| 45 | 
							
								
							 | 
							nnnn0 | 
							⊢ ( - 𝐴  ∈  ℕ  →  - 𝐴  ∈  ℕ0 )  | 
						
						
							| 46 | 
							
								45
							 | 
							nn0ge0d | 
							⊢ ( - 𝐴  ∈  ℕ  →  0  ≤  - 𝐴 )  | 
						
						
							| 47 | 
							
								46
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  - 𝐴  ∈  ℕ )  →  0  ≤  - 𝐴 )  | 
						
						
							| 48 | 
							
								44
							 | 
							le0neg1d | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  - 𝐴  ∈  ℕ )  →  ( 𝐴  ≤  0  ↔  0  ≤  - 𝐴 ) )  | 
						
						
							| 49 | 
							
								47 48
							 | 
							mpbird | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  - 𝐴  ∈  ℕ )  →  𝐴  ≤  0 )  | 
						
						
							| 50 | 
							
								44 49
							 | 
							absnidd | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  - 𝐴  ∈  ℕ )  →  ( abs ‘ 𝐴 )  =  - 𝐴 )  | 
						
						
							| 51 | 
							
								50
							 | 
							eleq1d | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  - 𝐴  ∈  ℕ )  →  ( ( abs ‘ 𝐴 )  ∈  ℙ  ↔  - 𝐴  ∈  ℙ ) )  | 
						
						
							| 52 | 
							
								25 42 51
							 | 
							3bitr4d | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  - 𝐴  ∈  ℕ )  →  ( 𝐴  ∈  𝐼  ↔  ( abs ‘ 𝐴 )  ∈  ℙ ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							adantrl | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴  ∈  ℝ  ∧  - 𝐴  ∈  ℕ ) )  →  ( 𝐴  ∈  𝐼  ↔  ( abs ‘ 𝐴 )  ∈  ℙ ) )  | 
						
						
							| 54 | 
							
								
							 | 
							elznn0nn | 
							⊢ ( 𝐴  ∈  ℤ  ↔  ( 𝐴  ∈  ℕ0  ∨  ( 𝐴  ∈  ℝ  ∧  - 𝐴  ∈  ℕ ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							biimpi | 
							⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴  ∈  ℕ0  ∨  ( 𝐴  ∈  ℝ  ∧  - 𝐴  ∈  ℕ ) ) )  | 
						
						
							| 56 | 
							
								23 53 55
							 | 
							mpjaodan | 
							⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴  ∈  𝐼  ↔  ( abs ‘ 𝐴 )  ∈  ℙ ) )  | 
						
						
							| 57 | 
							
								3 56
							 | 
							biadanii | 
							⊢ ( 𝐴  ∈  𝐼  ↔  ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  ∈  ℙ ) )  |