| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							prmirred.i | 
							⊢ 𝐼  =  ( Irred ‘ ℤring )  | 
						
						
							| 2 | 
							
								
							 | 
							zringring | 
							⊢ ℤring  ∈  Ring  | 
						
						
							| 3 | 
							
								
							 | 
							zring1 | 
							⊢ 1  =  ( 1r ‘ ℤring )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							irredn1 | 
							⊢ ( ( ℤring  ∈  Ring  ∧  𝐴  ∈  𝐼 )  →  𝐴  ≠  1 )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							mpan | 
							⊢ ( 𝐴  ∈  𝐼  →  𝐴  ≠  1 )  | 
						
						
							| 6 | 
							
								5
							 | 
							anim2i | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  →  ( 𝐴  ∈  ℕ  ∧  𝐴  ≠  1 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eluz2b3 | 
							⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝐴  ∈  ℕ  ∧  𝐴  ≠  1 ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylibr | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  →  𝐴  ∈  ( ℤ≥ ‘ 2 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							nnz | 
							⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℤ )  | 
						
						
							| 10 | 
							
								9
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  𝑦  ∈  ℤ )  | 
						
						
							| 11 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  𝑦  ∥  𝐴 )  | 
						
						
							| 12 | 
							
								
							 | 
							nnne0 | 
							⊢ ( 𝑦  ∈  ℕ  →  𝑦  ≠  0 )  | 
						
						
							| 13 | 
							
								12
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  𝑦  ≠  0 )  | 
						
						
							| 14 | 
							
								
							 | 
							nnz | 
							⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℤ )  | 
						
						
							| 15 | 
							
								14
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  𝐴  ∈  ℤ )  | 
						
						
							| 16 | 
							
								
							 | 
							dvdsval2 | 
							⊢ ( ( 𝑦  ∈  ℤ  ∧  𝑦  ≠  0  ∧  𝐴  ∈  ℤ )  →  ( 𝑦  ∥  𝐴  ↔  ( 𝐴  /  𝑦 )  ∈  ℤ ) )  | 
						
						
							| 17 | 
							
								10 13 15 16
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( 𝑦  ∥  𝐴  ↔  ( 𝐴  /  𝑦 )  ∈  ℤ ) )  | 
						
						
							| 18 | 
							
								11 17
							 | 
							mpbid | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( 𝐴  /  𝑦 )  ∈  ℤ )  | 
						
						
							| 19 | 
							
								15
							 | 
							zcnd | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  𝐴  ∈  ℂ )  | 
						
						
							| 20 | 
							
								
							 | 
							nncn | 
							⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℂ )  | 
						
						
							| 21 | 
							
								20
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  𝑦  ∈  ℂ )  | 
						
						
							| 22 | 
							
								19 21 13
							 | 
							divcan2d | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( 𝑦  ·  ( 𝐴  /  𝑦 ) )  =  𝐴 )  | 
						
						
							| 23 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  𝐴  ∈  𝐼 )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( 𝑦  ·  ( 𝐴  /  𝑦 ) )  ∈  𝐼 )  | 
						
						
							| 25 | 
							
								
							 | 
							zringbas | 
							⊢ ℤ  =  ( Base ‘ ℤring )  | 
						
						
							| 26 | 
							
								
							 | 
							eqid | 
							⊢ ( Unit ‘ ℤring )  =  ( Unit ‘ ℤring )  | 
						
						
							| 27 | 
							
								
							 | 
							zringmulr | 
							⊢  ·   =  ( .r ‘ ℤring )  | 
						
						
							| 28 | 
							
								1 25 26 27
							 | 
							irredmul | 
							⊢ ( ( 𝑦  ∈  ℤ  ∧  ( 𝐴  /  𝑦 )  ∈  ℤ  ∧  ( 𝑦  ·  ( 𝐴  /  𝑦 ) )  ∈  𝐼 )  →  ( 𝑦  ∈  ( Unit ‘ ℤring )  ∨  ( 𝐴  /  𝑦 )  ∈  ( Unit ‘ ℤring ) ) )  | 
						
						
							| 29 | 
							
								10 18 24 28
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( 𝑦  ∈  ( Unit ‘ ℤring )  ∨  ( 𝐴  /  𝑦 )  ∈  ( Unit ‘ ℤring ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							zringunit | 
							⊢ ( 𝑦  ∈  ( Unit ‘ ℤring )  ↔  ( 𝑦  ∈  ℤ  ∧  ( abs ‘ 𝑦 )  =  1 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							baib | 
							⊢ ( 𝑦  ∈  ℤ  →  ( 𝑦  ∈  ( Unit ‘ ℤring )  ↔  ( abs ‘ 𝑦 )  =  1 ) )  | 
						
						
							| 32 | 
							
								10 31
							 | 
							syl | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( 𝑦  ∈  ( Unit ‘ ℤring )  ↔  ( abs ‘ 𝑦 )  =  1 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							nnnn0 | 
							⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℕ0 )  | 
						
						
							| 34 | 
							
								
							 | 
							nn0re | 
							⊢ ( 𝑦  ∈  ℕ0  →  𝑦  ∈  ℝ )  | 
						
						
							| 35 | 
							
								
							 | 
							nn0ge0 | 
							⊢ ( 𝑦  ∈  ℕ0  →  0  ≤  𝑦 )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							absidd | 
							⊢ ( 𝑦  ∈  ℕ0  →  ( abs ‘ 𝑦 )  =  𝑦 )  | 
						
						
							| 37 | 
							
								33 36
							 | 
							syl | 
							⊢ ( 𝑦  ∈  ℕ  →  ( abs ‘ 𝑦 )  =  𝑦 )  | 
						
						
							| 38 | 
							
								37
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( abs ‘ 𝑦 )  =  𝑦 )  | 
						
						
							| 39 | 
							
								38
							 | 
							eqeq1d | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( ( abs ‘ 𝑦 )  =  1  ↔  𝑦  =  1 ) )  | 
						
						
							| 40 | 
							
								32 39
							 | 
							bitrd | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( 𝑦  ∈  ( Unit ‘ ℤring )  ↔  𝑦  =  1 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							zringunit | 
							⊢ ( ( 𝐴  /  𝑦 )  ∈  ( Unit ‘ ℤring )  ↔  ( ( 𝐴  /  𝑦 )  ∈  ℤ  ∧  ( abs ‘ ( 𝐴  /  𝑦 ) )  =  1 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							baib | 
							⊢ ( ( 𝐴  /  𝑦 )  ∈  ℤ  →  ( ( 𝐴  /  𝑦 )  ∈  ( Unit ‘ ℤring )  ↔  ( abs ‘ ( 𝐴  /  𝑦 ) )  =  1 ) )  | 
						
						
							| 43 | 
							
								18 42
							 | 
							syl | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( ( 𝐴  /  𝑦 )  ∈  ( Unit ‘ ℤring )  ↔  ( abs ‘ ( 𝐴  /  𝑦 ) )  =  1 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							nnre | 
							⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℝ )  | 
						
						
							| 45 | 
							
								44
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  𝐴  ∈  ℝ )  | 
						
						
							| 46 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  𝑦  ∈  ℕ )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							nndivred | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( 𝐴  /  𝑦 )  ∈  ℝ )  | 
						
						
							| 48 | 
							
								
							 | 
							nnnn0 | 
							⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℕ0 )  | 
						
						
							| 49 | 
							
								
							 | 
							nn0ge0 | 
							⊢ ( 𝐴  ∈  ℕ0  →  0  ≤  𝐴 )  | 
						
						
							| 50 | 
							
								48 49
							 | 
							syl | 
							⊢ ( 𝐴  ∈  ℕ  →  0  ≤  𝐴 )  | 
						
						
							| 51 | 
							
								50
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  0  ≤  𝐴 )  | 
						
						
							| 52 | 
							
								46
							 | 
							nnred | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  𝑦  ∈  ℝ )  | 
						
						
							| 53 | 
							
								
							 | 
							nngt0 | 
							⊢ ( 𝑦  ∈  ℕ  →  0  <  𝑦 )  | 
						
						
							| 54 | 
							
								53
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  0  <  𝑦 )  | 
						
						
							| 55 | 
							
								
							 | 
							divge0 | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝑦  ∈  ℝ  ∧  0  <  𝑦 ) )  →  0  ≤  ( 𝐴  /  𝑦 ) )  | 
						
						
							| 56 | 
							
								45 51 52 54 55
							 | 
							syl22anc | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  0  ≤  ( 𝐴  /  𝑦 ) )  | 
						
						
							| 57 | 
							
								47 56
							 | 
							absidd | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( abs ‘ ( 𝐴  /  𝑦 ) )  =  ( 𝐴  /  𝑦 ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							eqeq1d | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( ( abs ‘ ( 𝐴  /  𝑦 ) )  =  1  ↔  ( 𝐴  /  𝑦 )  =  1 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							1cnd | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  1  ∈  ℂ )  | 
						
						
							| 60 | 
							
								19 21 59 13
							 | 
							divmuld | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( ( 𝐴  /  𝑦 )  =  1  ↔  ( 𝑦  ·  1 )  =  𝐴 ) )  | 
						
						
							| 61 | 
							
								21
							 | 
							mulridd | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( 𝑦  ·  1 )  =  𝑦 )  | 
						
						
							| 62 | 
							
								61
							 | 
							eqeq1d | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( ( 𝑦  ·  1 )  =  𝐴  ↔  𝑦  =  𝐴 ) )  | 
						
						
							| 63 | 
							
								58 60 62
							 | 
							3bitrd | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( ( abs ‘ ( 𝐴  /  𝑦 ) )  =  1  ↔  𝑦  =  𝐴 ) )  | 
						
						
							| 64 | 
							
								43 63
							 | 
							bitrd | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( ( 𝐴  /  𝑦 )  ∈  ( Unit ‘ ℤring )  ↔  𝑦  =  𝐴 ) )  | 
						
						
							| 65 | 
							
								40 64
							 | 
							orbi12d | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( ( 𝑦  ∈  ( Unit ‘ ℤring )  ∨  ( 𝐴  /  𝑦 )  ∈  ( Unit ‘ ℤring ) )  ↔  ( 𝑦  =  1  ∨  𝑦  =  𝐴 ) ) )  | 
						
						
							| 66 | 
							
								29 65
							 | 
							mpbid | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐴 ) )  →  ( 𝑦  =  1  ∨  𝑦  =  𝐴 ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							expr | 
							⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  ∧  𝑦  ∈  ℕ )  →  ( 𝑦  ∥  𝐴  →  ( 𝑦  =  1  ∨  𝑦  =  𝐴 ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							ralrimiva | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  →  ∀ 𝑦  ∈  ℕ ( 𝑦  ∥  𝐴  →  ( 𝑦  =  1  ∨  𝑦  =  𝐴 ) ) )  | 
						
						
							| 69 | 
							
								
							 | 
							isprm2 | 
							⊢ ( 𝐴  ∈  ℙ  ↔  ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  ∀ 𝑦  ∈  ℕ ( 𝑦  ∥  𝐴  →  ( 𝑦  =  1  ∨  𝑦  =  𝐴 ) ) ) )  | 
						
						
							| 70 | 
							
								8 68 69
							 | 
							sylanbrc | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  𝐼 )  →  𝐴  ∈  ℙ )  | 
						
						
							| 71 | 
							
								
							 | 
							prmz | 
							⊢ ( 𝐴  ∈  ℙ  →  𝐴  ∈  ℤ )  | 
						
						
							| 72 | 
							
								
							 | 
							1nprm | 
							⊢ ¬  1  ∈  ℙ  | 
						
						
							| 73 | 
							
								
							 | 
							zringunit | 
							⊢ ( 𝐴  ∈  ( Unit ‘ ℤring )  ↔  ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 ) )  | 
						
						
							| 74 | 
							
								
							 | 
							prmnn | 
							⊢ ( 𝐴  ∈  ℙ  →  𝐴  ∈  ℕ )  | 
						
						
							| 75 | 
							
								
							 | 
							nn0re | 
							⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℝ )  | 
						
						
							| 76 | 
							
								75 49
							 | 
							absidd | 
							⊢ ( 𝐴  ∈  ℕ0  →  ( abs ‘ 𝐴 )  =  𝐴 )  | 
						
						
							| 77 | 
							
								74 48 76
							 | 
							3syl | 
							⊢ ( 𝐴  ∈  ℙ  →  ( abs ‘ 𝐴 )  =  𝐴 )  | 
						
						
							| 78 | 
							
								
							 | 
							id | 
							⊢ ( 𝐴  ∈  ℙ  →  𝐴  ∈  ℙ )  | 
						
						
							| 79 | 
							
								77 78
							 | 
							eqeltrd | 
							⊢ ( 𝐴  ∈  ℙ  →  ( abs ‘ 𝐴 )  ∈  ℙ )  | 
						
						
							| 80 | 
							
								
							 | 
							eleq1 | 
							⊢ ( ( abs ‘ 𝐴 )  =  1  →  ( ( abs ‘ 𝐴 )  ∈  ℙ  ↔  1  ∈  ℙ ) )  | 
						
						
							| 81 | 
							
								79 80
							 | 
							syl5ibcom | 
							⊢ ( 𝐴  ∈  ℙ  →  ( ( abs ‘ 𝐴 )  =  1  →  1  ∈  ℙ ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							adantld | 
							⊢ ( 𝐴  ∈  ℙ  →  ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  1  ∈  ℙ ) )  | 
						
						
							| 83 | 
							
								73 82
							 | 
							biimtrid | 
							⊢ ( 𝐴  ∈  ℙ  →  ( 𝐴  ∈  ( Unit ‘ ℤring )  →  1  ∈  ℙ ) )  | 
						
						
							| 84 | 
							
								72 83
							 | 
							mtoi | 
							⊢ ( 𝐴  ∈  ℙ  →  ¬  𝐴  ∈  ( Unit ‘ ℤring ) )  | 
						
						
							| 85 | 
							
								
							 | 
							dvdsmul1 | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  𝑥  ∥  ( 𝑥  ·  𝑦 ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  𝑥  ∥  ( 𝑥  ·  𝑦 ) )  | 
						
						
							| 87 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( 𝑥  ·  𝑦 )  =  𝐴 )  | 
						
						
							| 88 | 
							
								86 87
							 | 
							breqtrd | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  𝑥  ∥  𝐴 )  | 
						
						
							| 89 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  𝑥  ∈  ℤ )  | 
						
						
							| 90 | 
							
								71
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  𝐴  ∈  ℤ )  | 
						
						
							| 91 | 
							
								
							 | 
							absdvdsb | 
							⊢ ( ( 𝑥  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( 𝑥  ∥  𝐴  ↔  ( abs ‘ 𝑥 )  ∥  𝐴 ) )  | 
						
						
							| 92 | 
							
								89 90 91
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( 𝑥  ∥  𝐴  ↔  ( abs ‘ 𝑥 )  ∥  𝐴 ) )  | 
						
						
							| 93 | 
							
								88 92
							 | 
							mpbid | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( abs ‘ 𝑥 )  ∥  𝐴 )  | 
						
						
							| 94 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑦  =  ( abs ‘ 𝑥 )  →  ( 𝑦  ∥  𝐴  ↔  ( abs ‘ 𝑥 )  ∥  𝐴 ) )  | 
						
						
							| 95 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑦  =  ( abs ‘ 𝑥 )  →  ( 𝑦  =  1  ↔  ( abs ‘ 𝑥 )  =  1 ) )  | 
						
						
							| 96 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑦  =  ( abs ‘ 𝑥 )  →  ( 𝑦  =  𝐴  ↔  ( abs ‘ 𝑥 )  =  𝐴 ) )  | 
						
						
							| 97 | 
							
								95 96
							 | 
							orbi12d | 
							⊢ ( 𝑦  =  ( abs ‘ 𝑥 )  →  ( ( 𝑦  =  1  ∨  𝑦  =  𝐴 )  ↔  ( ( abs ‘ 𝑥 )  =  1  ∨  ( abs ‘ 𝑥 )  =  𝐴 ) ) )  | 
						
						
							| 98 | 
							
								94 97
							 | 
							imbi12d | 
							⊢ ( 𝑦  =  ( abs ‘ 𝑥 )  →  ( ( 𝑦  ∥  𝐴  →  ( 𝑦  =  1  ∨  𝑦  =  𝐴 ) )  ↔  ( ( abs ‘ 𝑥 )  ∥  𝐴  →  ( ( abs ‘ 𝑥 )  =  1  ∨  ( abs ‘ 𝑥 )  =  𝐴 ) ) ) )  | 
						
						
							| 99 | 
							
								69
							 | 
							simprbi | 
							⊢ ( 𝐴  ∈  ℙ  →  ∀ 𝑦  ∈  ℕ ( 𝑦  ∥  𝐴  →  ( 𝑦  =  1  ∨  𝑦  =  𝐴 ) ) )  | 
						
						
							| 100 | 
							
								99
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ∀ 𝑦  ∈  ℕ ( 𝑦  ∥  𝐴  →  ( 𝑦  =  1  ∨  𝑦  =  𝐴 ) ) )  | 
						
						
							| 101 | 
							
								89
							 | 
							zcnd | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  𝑥  ∈  ℂ )  | 
						
						
							| 102 | 
							
								74
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  𝐴  ∈  ℕ )  | 
						
						
							| 103 | 
							
								102
							 | 
							nnne0d | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  𝐴  ≠  0 )  | 
						
						
							| 104 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  𝑦  ∈  ℤ )  | 
						
						
							| 105 | 
							
								104
							 | 
							zcnd | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  𝑦  ∈  ℂ )  | 
						
						
							| 106 | 
							
								105
							 | 
							mul02d | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( 0  ·  𝑦 )  =  0 )  | 
						
						
							| 107 | 
							
								103 87 106
							 | 
							3netr4d | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( 𝑥  ·  𝑦 )  ≠  ( 0  ·  𝑦 ) )  | 
						
						
							| 108 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  0  →  ( 𝑥  ·  𝑦 )  =  ( 0  ·  𝑦 ) )  | 
						
						
							| 109 | 
							
								108
							 | 
							necon3i | 
							⊢ ( ( 𝑥  ·  𝑦 )  ≠  ( 0  ·  𝑦 )  →  𝑥  ≠  0 )  | 
						
						
							| 110 | 
							
								107 109
							 | 
							syl | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  𝑥  ≠  0 )  | 
						
						
							| 111 | 
							
								101 110
							 | 
							absne0d | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( abs ‘ 𝑥 )  ≠  0 )  | 
						
						
							| 112 | 
							
								111
							 | 
							neneqd | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ¬  ( abs ‘ 𝑥 )  =  0 )  | 
						
						
							| 113 | 
							
								
							 | 
							nn0abscl | 
							⊢ ( 𝑥  ∈  ℤ  →  ( abs ‘ 𝑥 )  ∈  ℕ0 )  | 
						
						
							| 114 | 
							
								89 113
							 | 
							syl | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( abs ‘ 𝑥 )  ∈  ℕ0 )  | 
						
						
							| 115 | 
							
								
							 | 
							elnn0 | 
							⊢ ( ( abs ‘ 𝑥 )  ∈  ℕ0  ↔  ( ( abs ‘ 𝑥 )  ∈  ℕ  ∨  ( abs ‘ 𝑥 )  =  0 ) )  | 
						
						
							| 116 | 
							
								114 115
							 | 
							sylib | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( ( abs ‘ 𝑥 )  ∈  ℕ  ∨  ( abs ‘ 𝑥 )  =  0 ) )  | 
						
						
							| 117 | 
							
								116
							 | 
							ord | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( ¬  ( abs ‘ 𝑥 )  ∈  ℕ  →  ( abs ‘ 𝑥 )  =  0 ) )  | 
						
						
							| 118 | 
							
								112 117
							 | 
							mt3d | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( abs ‘ 𝑥 )  ∈  ℕ )  | 
						
						
							| 119 | 
							
								98 100 118
							 | 
							rspcdva | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( ( abs ‘ 𝑥 )  ∥  𝐴  →  ( ( abs ‘ 𝑥 )  =  1  ∨  ( abs ‘ 𝑥 )  =  𝐴 ) ) )  | 
						
						
							| 120 | 
							
								93 119
							 | 
							mpd | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( ( abs ‘ 𝑥 )  =  1  ∨  ( abs ‘ 𝑥 )  =  𝐴 ) )  | 
						
						
							| 121 | 
							
								
							 | 
							zringunit | 
							⊢ ( 𝑥  ∈  ( Unit ‘ ℤring )  ↔  ( 𝑥  ∈  ℤ  ∧  ( abs ‘ 𝑥 )  =  1 ) )  | 
						
						
							| 122 | 
							
								121
							 | 
							baib | 
							⊢ ( 𝑥  ∈  ℤ  →  ( 𝑥  ∈  ( Unit ‘ ℤring )  ↔  ( abs ‘ 𝑥 )  =  1 ) )  | 
						
						
							| 123 | 
							
								89 122
							 | 
							syl | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( 𝑥  ∈  ( Unit ‘ ℤring )  ↔  ( abs ‘ 𝑥 )  =  1 ) )  | 
						
						
							| 124 | 
							
								104 31
							 | 
							syl | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( 𝑦  ∈  ( Unit ‘ ℤring )  ↔  ( abs ‘ 𝑦 )  =  1 ) )  | 
						
						
							| 125 | 
							
								105
							 | 
							abscld | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( abs ‘ 𝑦 )  ∈  ℝ )  | 
						
						
							| 126 | 
							
								125
							 | 
							recnd | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( abs ‘ 𝑦 )  ∈  ℂ )  | 
						
						
							| 127 | 
							
								
							 | 
							1cnd | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  1  ∈  ℂ )  | 
						
						
							| 128 | 
							
								101
							 | 
							abscld | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( abs ‘ 𝑥 )  ∈  ℝ )  | 
						
						
							| 129 | 
							
								128
							 | 
							recnd | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( abs ‘ 𝑥 )  ∈  ℂ )  | 
						
						
							| 130 | 
							
								126 127 129 111
							 | 
							mulcand | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( ( ( abs ‘ 𝑥 )  ·  ( abs ‘ 𝑦 ) )  =  ( ( abs ‘ 𝑥 )  ·  1 )  ↔  ( abs ‘ 𝑦 )  =  1 ) )  | 
						
						
							| 131 | 
							
								87
							 | 
							fveq2d | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( abs ‘ ( 𝑥  ·  𝑦 ) )  =  ( abs ‘ 𝐴 ) )  | 
						
						
							| 132 | 
							
								101 105
							 | 
							absmuld | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( abs ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( abs ‘ 𝑥 )  ·  ( abs ‘ 𝑦 ) ) )  | 
						
						
							| 133 | 
							
								77
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( abs ‘ 𝐴 )  =  𝐴 )  | 
						
						
							| 134 | 
							
								131 132 133
							 | 
							3eqtr3d | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( ( abs ‘ 𝑥 )  ·  ( abs ‘ 𝑦 ) )  =  𝐴 )  | 
						
						
							| 135 | 
							
								129
							 | 
							mulridd | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( ( abs ‘ 𝑥 )  ·  1 )  =  ( abs ‘ 𝑥 ) )  | 
						
						
							| 136 | 
							
								134 135
							 | 
							eqeq12d | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( ( ( abs ‘ 𝑥 )  ·  ( abs ‘ 𝑦 ) )  =  ( ( abs ‘ 𝑥 )  ·  1 )  ↔  𝐴  =  ( abs ‘ 𝑥 ) ) )  | 
						
						
							| 137 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝐴  =  ( abs ‘ 𝑥 )  ↔  ( abs ‘ 𝑥 )  =  𝐴 )  | 
						
						
							| 138 | 
							
								136 137
							 | 
							bitrdi | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( ( ( abs ‘ 𝑥 )  ·  ( abs ‘ 𝑦 ) )  =  ( ( abs ‘ 𝑥 )  ·  1 )  ↔  ( abs ‘ 𝑥 )  =  𝐴 ) )  | 
						
						
							| 139 | 
							
								124 130 138
							 | 
							3bitr2d | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( 𝑦  ∈  ( Unit ‘ ℤring )  ↔  ( abs ‘ 𝑥 )  =  𝐴 ) )  | 
						
						
							| 140 | 
							
								123 139
							 | 
							orbi12d | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( ( 𝑥  ∈  ( Unit ‘ ℤring )  ∨  𝑦  ∈  ( Unit ‘ ℤring ) )  ↔  ( ( abs ‘ 𝑥 )  =  1  ∨  ( abs ‘ 𝑥 )  =  𝐴 ) ) )  | 
						
						
							| 141 | 
							
								120 140
							 | 
							mpbird | 
							⊢ ( ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑥  ·  𝑦 )  =  𝐴 )  →  ( 𝑥  ∈  ( Unit ‘ ℤring )  ∨  𝑦  ∈  ( Unit ‘ ℤring ) ) )  | 
						
						
							| 142 | 
							
								141
							 | 
							ex | 
							⊢ ( ( 𝐴  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑥  ·  𝑦 )  =  𝐴  →  ( 𝑥  ∈  ( Unit ‘ ℤring )  ∨  𝑦  ∈  ( Unit ‘ ℤring ) ) ) )  | 
						
						
							| 143 | 
							
								142
							 | 
							ralrimivva | 
							⊢ ( 𝐴  ∈  ℙ  →  ∀ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ℤ ( ( 𝑥  ·  𝑦 )  =  𝐴  →  ( 𝑥  ∈  ( Unit ‘ ℤring )  ∨  𝑦  ∈  ( Unit ‘ ℤring ) ) ) )  | 
						
						
							| 144 | 
							
								25 26 1 27
							 | 
							isirred2 | 
							⊢ ( 𝐴  ∈  𝐼  ↔  ( 𝐴  ∈  ℤ  ∧  ¬  𝐴  ∈  ( Unit ‘ ℤring )  ∧  ∀ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ℤ ( ( 𝑥  ·  𝑦 )  =  𝐴  →  ( 𝑥  ∈  ( Unit ‘ ℤring )  ∨  𝑦  ∈  ( Unit ‘ ℤring ) ) ) ) )  | 
						
						
							| 145 | 
							
								71 84 143 144
							 | 
							syl3anbrc | 
							⊢ ( 𝐴  ∈  ℙ  →  𝐴  ∈  𝐼 )  | 
						
						
							| 146 | 
							
								145
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∈  ℙ )  →  𝐴  ∈  𝐼 )  | 
						
						
							| 147 | 
							
								70 146
							 | 
							impbida | 
							⊢ ( 𝐴  ∈  ℕ  →  ( 𝐴  ∈  𝐼  ↔  𝐴  ∈  ℙ ) )  |