Step |
Hyp |
Ref |
Expression |
1 |
|
prmirred.i |
⊢ 𝐼 = ( Irred ‘ ℤring ) |
2 |
|
zringring |
⊢ ℤring ∈ Ring |
3 |
|
zring1 |
⊢ 1 = ( 1r ‘ ℤring ) |
4 |
1 3
|
irredn1 |
⊢ ( ( ℤring ∈ Ring ∧ 𝐴 ∈ 𝐼 ) → 𝐴 ≠ 1 ) |
5 |
2 4
|
mpan |
⊢ ( 𝐴 ∈ 𝐼 → 𝐴 ≠ 1 ) |
6 |
5
|
anim2i |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) → ( 𝐴 ∈ ℕ ∧ 𝐴 ≠ 1 ) ) |
7 |
|
eluz2b3 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐴 ∈ ℕ ∧ 𝐴 ≠ 1 ) ) |
8 |
6 7
|
sylibr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) → 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) |
9 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
10 |
9
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝑦 ∈ ℤ ) |
11 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝑦 ∥ 𝐴 ) |
12 |
|
nnne0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) |
13 |
12
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝑦 ≠ 0 ) |
14 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝐴 ∈ ℤ ) |
16 |
|
dvdsval2 |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝐴 ∈ ℤ ) → ( 𝑦 ∥ 𝐴 ↔ ( 𝐴 / 𝑦 ) ∈ ℤ ) ) |
17 |
10 13 15 16
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝑦 ∥ 𝐴 ↔ ( 𝐴 / 𝑦 ) ∈ ℤ ) ) |
18 |
11 17
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝐴 / 𝑦 ) ∈ ℤ ) |
19 |
15
|
zcnd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
20 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
21 |
20
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝑦 ∈ ℂ ) |
22 |
19 21 13
|
divcan2d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝑦 · ( 𝐴 / 𝑦 ) ) = 𝐴 ) |
23 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝐴 ∈ 𝐼 ) |
24 |
22 23
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝑦 · ( 𝐴 / 𝑦 ) ) ∈ 𝐼 ) |
25 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
26 |
|
eqid |
⊢ ( Unit ‘ ℤring ) = ( Unit ‘ ℤring ) |
27 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
28 |
1 25 26 27
|
irredmul |
⊢ ( ( 𝑦 ∈ ℤ ∧ ( 𝐴 / 𝑦 ) ∈ ℤ ∧ ( 𝑦 · ( 𝐴 / 𝑦 ) ) ∈ 𝐼 ) → ( 𝑦 ∈ ( Unit ‘ ℤring ) ∨ ( 𝐴 / 𝑦 ) ∈ ( Unit ‘ ℤring ) ) ) |
29 |
10 18 24 28
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝑦 ∈ ( Unit ‘ ℤring ) ∨ ( 𝐴 / 𝑦 ) ∈ ( Unit ‘ ℤring ) ) ) |
30 |
|
zringunit |
⊢ ( 𝑦 ∈ ( Unit ‘ ℤring ) ↔ ( 𝑦 ∈ ℤ ∧ ( abs ‘ 𝑦 ) = 1 ) ) |
31 |
30
|
baib |
⊢ ( 𝑦 ∈ ℤ → ( 𝑦 ∈ ( Unit ‘ ℤring ) ↔ ( abs ‘ 𝑦 ) = 1 ) ) |
32 |
10 31
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝑦 ∈ ( Unit ‘ ℤring ) ↔ ( abs ‘ 𝑦 ) = 1 ) ) |
33 |
|
nnnn0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℕ0 ) |
34 |
|
nn0re |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℝ ) |
35 |
|
nn0ge0 |
⊢ ( 𝑦 ∈ ℕ0 → 0 ≤ 𝑦 ) |
36 |
34 35
|
absidd |
⊢ ( 𝑦 ∈ ℕ0 → ( abs ‘ 𝑦 ) = 𝑦 ) |
37 |
33 36
|
syl |
⊢ ( 𝑦 ∈ ℕ → ( abs ‘ 𝑦 ) = 𝑦 ) |
38 |
37
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( abs ‘ 𝑦 ) = 𝑦 ) |
39 |
38
|
eqeq1d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( ( abs ‘ 𝑦 ) = 1 ↔ 𝑦 = 1 ) ) |
40 |
32 39
|
bitrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝑦 ∈ ( Unit ‘ ℤring ) ↔ 𝑦 = 1 ) ) |
41 |
|
zringunit |
⊢ ( ( 𝐴 / 𝑦 ) ∈ ( Unit ‘ ℤring ) ↔ ( ( 𝐴 / 𝑦 ) ∈ ℤ ∧ ( abs ‘ ( 𝐴 / 𝑦 ) ) = 1 ) ) |
42 |
41
|
baib |
⊢ ( ( 𝐴 / 𝑦 ) ∈ ℤ → ( ( 𝐴 / 𝑦 ) ∈ ( Unit ‘ ℤring ) ↔ ( abs ‘ ( 𝐴 / 𝑦 ) ) = 1 ) ) |
43 |
18 42
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( ( 𝐴 / 𝑦 ) ∈ ( Unit ‘ ℤring ) ↔ ( abs ‘ ( 𝐴 / 𝑦 ) ) = 1 ) ) |
44 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
45 |
44
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝐴 ∈ ℝ ) |
46 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝑦 ∈ ℕ ) |
47 |
45 46
|
nndivred |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝐴 / 𝑦 ) ∈ ℝ ) |
48 |
|
nnnn0 |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 ) |
49 |
|
nn0ge0 |
⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) |
50 |
48 49
|
syl |
⊢ ( 𝐴 ∈ ℕ → 0 ≤ 𝐴 ) |
51 |
50
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 0 ≤ 𝐴 ) |
52 |
46
|
nnred |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝑦 ∈ ℝ ) |
53 |
|
nngt0 |
⊢ ( 𝑦 ∈ ℕ → 0 < 𝑦 ) |
54 |
53
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 0 < 𝑦 ) |
55 |
|
divge0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) ) → 0 ≤ ( 𝐴 / 𝑦 ) ) |
56 |
45 51 52 54 55
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 0 ≤ ( 𝐴 / 𝑦 ) ) |
57 |
47 56
|
absidd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( abs ‘ ( 𝐴 / 𝑦 ) ) = ( 𝐴 / 𝑦 ) ) |
58 |
57
|
eqeq1d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( ( abs ‘ ( 𝐴 / 𝑦 ) ) = 1 ↔ ( 𝐴 / 𝑦 ) = 1 ) ) |
59 |
|
1cnd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 1 ∈ ℂ ) |
60 |
19 21 59 13
|
divmuld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( ( 𝐴 / 𝑦 ) = 1 ↔ ( 𝑦 · 1 ) = 𝐴 ) ) |
61 |
21
|
mulid1d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝑦 · 1 ) = 𝑦 ) |
62 |
61
|
eqeq1d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( ( 𝑦 · 1 ) = 𝐴 ↔ 𝑦 = 𝐴 ) ) |
63 |
58 60 62
|
3bitrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( ( abs ‘ ( 𝐴 / 𝑦 ) ) = 1 ↔ 𝑦 = 𝐴 ) ) |
64 |
43 63
|
bitrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( ( 𝐴 / 𝑦 ) ∈ ( Unit ‘ ℤring ) ↔ 𝑦 = 𝐴 ) ) |
65 |
40 64
|
orbi12d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( ( 𝑦 ∈ ( Unit ‘ ℤring ) ∨ ( 𝐴 / 𝑦 ) ∈ ( Unit ‘ ℤring ) ) ↔ ( 𝑦 = 1 ∨ 𝑦 = 𝐴 ) ) ) |
66 |
29 65
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝑦 = 1 ∨ 𝑦 = 𝐴 ) ) |
67 |
66
|
expr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ∥ 𝐴 → ( 𝑦 = 1 ∨ 𝑦 = 𝐴 ) ) ) |
68 |
67
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) → ∀ 𝑦 ∈ ℕ ( 𝑦 ∥ 𝐴 → ( 𝑦 = 1 ∨ 𝑦 = 𝐴 ) ) ) |
69 |
|
isprm2 |
⊢ ( 𝐴 ∈ ℙ ↔ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 ∥ 𝐴 → ( 𝑦 = 1 ∨ 𝑦 = 𝐴 ) ) ) ) |
70 |
8 68 69
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) → 𝐴 ∈ ℙ ) |
71 |
|
prmz |
⊢ ( 𝐴 ∈ ℙ → 𝐴 ∈ ℤ ) |
72 |
|
1nprm |
⊢ ¬ 1 ∈ ℙ |
73 |
|
zringunit |
⊢ ( 𝐴 ∈ ( Unit ‘ ℤring ) ↔ ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) ) |
74 |
|
prmnn |
⊢ ( 𝐴 ∈ ℙ → 𝐴 ∈ ℕ ) |
75 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
76 |
75 49
|
absidd |
⊢ ( 𝐴 ∈ ℕ0 → ( abs ‘ 𝐴 ) = 𝐴 ) |
77 |
74 48 76
|
3syl |
⊢ ( 𝐴 ∈ ℙ → ( abs ‘ 𝐴 ) = 𝐴 ) |
78 |
|
id |
⊢ ( 𝐴 ∈ ℙ → 𝐴 ∈ ℙ ) |
79 |
77 78
|
eqeltrd |
⊢ ( 𝐴 ∈ ℙ → ( abs ‘ 𝐴 ) ∈ ℙ ) |
80 |
|
eleq1 |
⊢ ( ( abs ‘ 𝐴 ) = 1 → ( ( abs ‘ 𝐴 ) ∈ ℙ ↔ 1 ∈ ℙ ) ) |
81 |
79 80
|
syl5ibcom |
⊢ ( 𝐴 ∈ ℙ → ( ( abs ‘ 𝐴 ) = 1 → 1 ∈ ℙ ) ) |
82 |
81
|
adantld |
⊢ ( 𝐴 ∈ ℙ → ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → 1 ∈ ℙ ) ) |
83 |
73 82
|
syl5bi |
⊢ ( 𝐴 ∈ ℙ → ( 𝐴 ∈ ( Unit ‘ ℤring ) → 1 ∈ ℙ ) ) |
84 |
72 83
|
mtoi |
⊢ ( 𝐴 ∈ ℙ → ¬ 𝐴 ∈ ( Unit ‘ ℤring ) ) |
85 |
|
dvdsmul1 |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → 𝑥 ∥ ( 𝑥 · 𝑦 ) ) |
86 |
85
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝑥 ∥ ( 𝑥 · 𝑦 ) ) |
87 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( 𝑥 · 𝑦 ) = 𝐴 ) |
88 |
86 87
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝑥 ∥ 𝐴 ) |
89 |
|
simplrl |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝑥 ∈ ℤ ) |
90 |
71
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝐴 ∈ ℤ ) |
91 |
|
absdvdsb |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝑥 ∥ 𝐴 ↔ ( abs ‘ 𝑥 ) ∥ 𝐴 ) ) |
92 |
89 90 91
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( 𝑥 ∥ 𝐴 ↔ ( abs ‘ 𝑥 ) ∥ 𝐴 ) ) |
93 |
88 92
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ 𝑥 ) ∥ 𝐴 ) |
94 |
|
breq1 |
⊢ ( 𝑦 = ( abs ‘ 𝑥 ) → ( 𝑦 ∥ 𝐴 ↔ ( abs ‘ 𝑥 ) ∥ 𝐴 ) ) |
95 |
|
eqeq1 |
⊢ ( 𝑦 = ( abs ‘ 𝑥 ) → ( 𝑦 = 1 ↔ ( abs ‘ 𝑥 ) = 1 ) ) |
96 |
|
eqeq1 |
⊢ ( 𝑦 = ( abs ‘ 𝑥 ) → ( 𝑦 = 𝐴 ↔ ( abs ‘ 𝑥 ) = 𝐴 ) ) |
97 |
95 96
|
orbi12d |
⊢ ( 𝑦 = ( abs ‘ 𝑥 ) → ( ( 𝑦 = 1 ∨ 𝑦 = 𝐴 ) ↔ ( ( abs ‘ 𝑥 ) = 1 ∨ ( abs ‘ 𝑥 ) = 𝐴 ) ) ) |
98 |
94 97
|
imbi12d |
⊢ ( 𝑦 = ( abs ‘ 𝑥 ) → ( ( 𝑦 ∥ 𝐴 → ( 𝑦 = 1 ∨ 𝑦 = 𝐴 ) ) ↔ ( ( abs ‘ 𝑥 ) ∥ 𝐴 → ( ( abs ‘ 𝑥 ) = 1 ∨ ( abs ‘ 𝑥 ) = 𝐴 ) ) ) ) |
99 |
69
|
simprbi |
⊢ ( 𝐴 ∈ ℙ → ∀ 𝑦 ∈ ℕ ( 𝑦 ∥ 𝐴 → ( 𝑦 = 1 ∨ 𝑦 = 𝐴 ) ) ) |
100 |
99
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ∀ 𝑦 ∈ ℕ ( 𝑦 ∥ 𝐴 → ( 𝑦 = 1 ∨ 𝑦 = 𝐴 ) ) ) |
101 |
89
|
zcnd |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝑥 ∈ ℂ ) |
102 |
74
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝐴 ∈ ℕ ) |
103 |
102
|
nnne0d |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝐴 ≠ 0 ) |
104 |
|
simplrr |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝑦 ∈ ℤ ) |
105 |
104
|
zcnd |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝑦 ∈ ℂ ) |
106 |
105
|
mul02d |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( 0 · 𝑦 ) = 0 ) |
107 |
103 87 106
|
3netr4d |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( 𝑥 · 𝑦 ) ≠ ( 0 · 𝑦 ) ) |
108 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 · 𝑦 ) = ( 0 · 𝑦 ) ) |
109 |
108
|
necon3i |
⊢ ( ( 𝑥 · 𝑦 ) ≠ ( 0 · 𝑦 ) → 𝑥 ≠ 0 ) |
110 |
107 109
|
syl |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝑥 ≠ 0 ) |
111 |
101 110
|
absne0d |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ 𝑥 ) ≠ 0 ) |
112 |
111
|
neneqd |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ¬ ( abs ‘ 𝑥 ) = 0 ) |
113 |
|
nn0abscl |
⊢ ( 𝑥 ∈ ℤ → ( abs ‘ 𝑥 ) ∈ ℕ0 ) |
114 |
89 113
|
syl |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ 𝑥 ) ∈ ℕ0 ) |
115 |
|
elnn0 |
⊢ ( ( abs ‘ 𝑥 ) ∈ ℕ0 ↔ ( ( abs ‘ 𝑥 ) ∈ ℕ ∨ ( abs ‘ 𝑥 ) = 0 ) ) |
116 |
114 115
|
sylib |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ( abs ‘ 𝑥 ) ∈ ℕ ∨ ( abs ‘ 𝑥 ) = 0 ) ) |
117 |
116
|
ord |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ¬ ( abs ‘ 𝑥 ) ∈ ℕ → ( abs ‘ 𝑥 ) = 0 ) ) |
118 |
112 117
|
mt3d |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ 𝑥 ) ∈ ℕ ) |
119 |
98 100 118
|
rspcdva |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ( abs ‘ 𝑥 ) ∥ 𝐴 → ( ( abs ‘ 𝑥 ) = 1 ∨ ( abs ‘ 𝑥 ) = 𝐴 ) ) ) |
120 |
93 119
|
mpd |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ( abs ‘ 𝑥 ) = 1 ∨ ( abs ‘ 𝑥 ) = 𝐴 ) ) |
121 |
|
zringunit |
⊢ ( 𝑥 ∈ ( Unit ‘ ℤring ) ↔ ( 𝑥 ∈ ℤ ∧ ( abs ‘ 𝑥 ) = 1 ) ) |
122 |
121
|
baib |
⊢ ( 𝑥 ∈ ℤ → ( 𝑥 ∈ ( Unit ‘ ℤring ) ↔ ( abs ‘ 𝑥 ) = 1 ) ) |
123 |
89 122
|
syl |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( 𝑥 ∈ ( Unit ‘ ℤring ) ↔ ( abs ‘ 𝑥 ) = 1 ) ) |
124 |
104 31
|
syl |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( 𝑦 ∈ ( Unit ‘ ℤring ) ↔ ( abs ‘ 𝑦 ) = 1 ) ) |
125 |
105
|
abscld |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ 𝑦 ) ∈ ℝ ) |
126 |
125
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ 𝑦 ) ∈ ℂ ) |
127 |
|
1cnd |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 1 ∈ ℂ ) |
128 |
101
|
abscld |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ 𝑥 ) ∈ ℝ ) |
129 |
128
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ 𝑥 ) ∈ ℂ ) |
130 |
126 127 129 111
|
mulcand |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) = ( ( abs ‘ 𝑥 ) · 1 ) ↔ ( abs ‘ 𝑦 ) = 1 ) ) |
131 |
87
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ ( 𝑥 · 𝑦 ) ) = ( abs ‘ 𝐴 ) ) |
132 |
101 105
|
absmuld |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ ( 𝑥 · 𝑦 ) ) = ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) ) |
133 |
77
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 ) |
134 |
131 132 133
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) = 𝐴 ) |
135 |
129
|
mulid1d |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ( abs ‘ 𝑥 ) · 1 ) = ( abs ‘ 𝑥 ) ) |
136 |
134 135
|
eqeq12d |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) = ( ( abs ‘ 𝑥 ) · 1 ) ↔ 𝐴 = ( abs ‘ 𝑥 ) ) ) |
137 |
|
eqcom |
⊢ ( 𝐴 = ( abs ‘ 𝑥 ) ↔ ( abs ‘ 𝑥 ) = 𝐴 ) |
138 |
136 137
|
bitrdi |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) = ( ( abs ‘ 𝑥 ) · 1 ) ↔ ( abs ‘ 𝑥 ) = 𝐴 ) ) |
139 |
124 130 138
|
3bitr2d |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( 𝑦 ∈ ( Unit ‘ ℤring ) ↔ ( abs ‘ 𝑥 ) = 𝐴 ) ) |
140 |
123 139
|
orbi12d |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ( 𝑥 ∈ ( Unit ‘ ℤring ) ∨ 𝑦 ∈ ( Unit ‘ ℤring ) ) ↔ ( ( abs ‘ 𝑥 ) = 1 ∨ ( abs ‘ 𝑥 ) = 𝐴 ) ) ) |
141 |
120 140
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( 𝑥 ∈ ( Unit ‘ ℤring ) ∨ 𝑦 ∈ ( Unit ‘ ℤring ) ) ) |
142 |
141
|
ex |
⊢ ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑥 · 𝑦 ) = 𝐴 → ( 𝑥 ∈ ( Unit ‘ ℤring ) ∨ 𝑦 ∈ ( Unit ‘ ℤring ) ) ) ) |
143 |
142
|
ralrimivva |
⊢ ( 𝐴 ∈ ℙ → ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( ( 𝑥 · 𝑦 ) = 𝐴 → ( 𝑥 ∈ ( Unit ‘ ℤring ) ∨ 𝑦 ∈ ( Unit ‘ ℤring ) ) ) ) |
144 |
25 26 1 27
|
isirred2 |
⊢ ( 𝐴 ∈ 𝐼 ↔ ( 𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ( Unit ‘ ℤring ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( ( 𝑥 · 𝑦 ) = 𝐴 → ( 𝑥 ∈ ( Unit ‘ ℤring ) ∨ 𝑦 ∈ ( Unit ‘ ℤring ) ) ) ) ) |
145 |
71 84 143 144
|
syl3anbrc |
⊢ ( 𝐴 ∈ ℙ → 𝐴 ∈ 𝐼 ) |
146 |
145
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ ℙ ) → 𝐴 ∈ 𝐼 ) |
147 |
70 146
|
impbida |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ ) ) |