Step |
Hyp |
Ref |
Expression |
1 |
|
prmlem0.1 |
⊢ ( ( ¬ 2 ∥ 𝑀 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
2 |
|
prmlem0.2 |
⊢ ( 𝐾 ∈ ℙ → ¬ 𝐾 ∥ 𝑁 ) |
3 |
|
prmlem0.3 |
⊢ ( 𝐾 + 2 ) = 𝑀 |
4 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ℙ ∖ { 2 } ) → 𝑥 ∈ ℙ ) |
5 |
|
eleq1 |
⊢ ( 𝑥 = 𝐾 → ( 𝑥 ∈ ℙ ↔ 𝐾 ∈ ℙ ) ) |
6 |
|
breq1 |
⊢ ( 𝑥 = 𝐾 → ( 𝑥 ∥ 𝑁 ↔ 𝐾 ∥ 𝑁 ) ) |
7 |
6
|
notbid |
⊢ ( 𝑥 = 𝐾 → ( ¬ 𝑥 ∥ 𝑁 ↔ ¬ 𝐾 ∥ 𝑁 ) ) |
8 |
5 7
|
imbi12d |
⊢ ( 𝑥 = 𝐾 → ( ( 𝑥 ∈ ℙ → ¬ 𝑥 ∥ 𝑁 ) ↔ ( 𝐾 ∈ ℙ → ¬ 𝐾 ∥ 𝑁 ) ) ) |
9 |
2 8
|
mpbiri |
⊢ ( 𝑥 = 𝐾 → ( 𝑥 ∈ ℙ → ¬ 𝑥 ∥ 𝑁 ) ) |
10 |
4 9
|
syl5 |
⊢ ( 𝑥 = 𝐾 → ( 𝑥 ∈ ( ℙ ∖ { 2 } ) → ¬ 𝑥 ∥ 𝑁 ) ) |
11 |
10
|
adantrd |
⊢ ( 𝑥 = 𝐾 → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
12 |
11
|
a1i |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑥 = 𝐾 → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) ) |
13 |
|
uzp1 |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) → ( 𝑥 = ( 𝐾 + 1 ) ∨ 𝑥 ∈ ( ℤ≥ ‘ ( ( 𝐾 + 1 ) + 1 ) ) ) ) |
14 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝐾 + 1 ) → ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝐾 + 1 ) ∈ ( ℙ ∖ { 2 } ) ) ) |
15 |
14
|
adantl |
⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ 𝑥 = ( 𝐾 + 1 ) ) → ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝐾 + 1 ) ∈ ( ℙ ∖ { 2 } ) ) ) |
16 |
|
eldifsn |
⊢ ( ( 𝐾 + 1 ) ∈ ( ℙ ∖ { 2 } ) ↔ ( ( 𝐾 + 1 ) ∈ ℙ ∧ ( 𝐾 + 1 ) ≠ 2 ) ) |
17 |
|
eluzel2 |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝐾 ∈ ℤ ) |
18 |
17
|
adantl |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐾 ∈ ℤ ) |
19 |
|
simpl |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ¬ 2 ∥ 𝐾 ) |
20 |
|
1z |
⊢ 1 ∈ ℤ |
21 |
|
n2dvds1 |
⊢ ¬ 2 ∥ 1 |
22 |
|
opoe |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾 ) ∧ ( 1 ∈ ℤ ∧ ¬ 2 ∥ 1 ) ) → 2 ∥ ( 𝐾 + 1 ) ) |
23 |
20 21 22
|
mpanr12 |
⊢ ( ( 𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾 ) → 2 ∥ ( 𝐾 + 1 ) ) |
24 |
18 19 23
|
syl2anc |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 2 ∥ ( 𝐾 + 1 ) ) |
25 |
24
|
adantr |
⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝐾 + 1 ) ∈ ℙ ) → 2 ∥ ( 𝐾 + 1 ) ) |
26 |
|
2z |
⊢ 2 ∈ ℤ |
27 |
|
uzid |
⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
28 |
26 27
|
mp1i |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
29 |
|
dvdsprm |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐾 + 1 ) ∈ ℙ ) → ( 2 ∥ ( 𝐾 + 1 ) ↔ 2 = ( 𝐾 + 1 ) ) ) |
30 |
28 29
|
sylan |
⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝐾 + 1 ) ∈ ℙ ) → ( 2 ∥ ( 𝐾 + 1 ) ↔ 2 = ( 𝐾 + 1 ) ) ) |
31 |
25 30
|
mpbid |
⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝐾 + 1 ) ∈ ℙ ) → 2 = ( 𝐾 + 1 ) ) |
32 |
31
|
eqcomd |
⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝐾 + 1 ) ∈ ℙ ) → ( 𝐾 + 1 ) = 2 ) |
33 |
32
|
a1d |
⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝐾 + 1 ) ∈ ℙ ) → ( 𝑥 ∥ 𝑁 → ( 𝐾 + 1 ) = 2 ) ) |
34 |
33
|
necon3ad |
⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ ( 𝐾 + 1 ) ∈ ℙ ) → ( ( 𝐾 + 1 ) ≠ 2 → ¬ 𝑥 ∥ 𝑁 ) ) |
35 |
34
|
expimpd |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( ( 𝐾 + 1 ) ∈ ℙ ∧ ( 𝐾 + 1 ) ≠ 2 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
36 |
16 35
|
syl5bi |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝐾 + 1 ) ∈ ( ℙ ∖ { 2 } ) → ¬ 𝑥 ∥ 𝑁 ) ) |
37 |
36
|
adantr |
⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ 𝑥 = ( 𝐾 + 1 ) ) → ( ( 𝐾 + 1 ) ∈ ( ℙ ∖ { 2 } ) → ¬ 𝑥 ∥ 𝑁 ) ) |
38 |
15 37
|
sylbid |
⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ 𝑥 = ( 𝐾 + 1 ) ) → ( 𝑥 ∈ ( ℙ ∖ { 2 } ) → ¬ 𝑥 ∥ 𝑁 ) ) |
39 |
38
|
adantrd |
⊢ ( ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ 𝑥 = ( 𝐾 + 1 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
40 |
39
|
ex |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑥 = ( 𝐾 + 1 ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) ) |
41 |
18
|
zcnd |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐾 ∈ ℂ ) |
42 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
43 |
|
addass |
⊢ ( ( 𝐾 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐾 + 1 ) + 1 ) = ( 𝐾 + ( 1 + 1 ) ) ) |
44 |
42 42 43
|
mp3an23 |
⊢ ( 𝐾 ∈ ℂ → ( ( 𝐾 + 1 ) + 1 ) = ( 𝐾 + ( 1 + 1 ) ) ) |
45 |
41 44
|
syl |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝐾 + 1 ) + 1 ) = ( 𝐾 + ( 1 + 1 ) ) ) |
46 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
47 |
46
|
oveq2i |
⊢ ( 𝐾 + ( 1 + 1 ) ) = ( 𝐾 + 2 ) |
48 |
47 3
|
eqtri |
⊢ ( 𝐾 + ( 1 + 1 ) ) = 𝑀 |
49 |
45 48
|
eqtrdi |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝐾 + 1 ) + 1 ) = 𝑀 ) |
50 |
49
|
fveq2d |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ℤ≥ ‘ ( ( 𝐾 + 1 ) + 1 ) ) = ( ℤ≥ ‘ 𝑀 ) ) |
51 |
50
|
eleq2d |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑥 ∈ ( ℤ≥ ‘ ( ( 𝐾 + 1 ) + 1 ) ) ↔ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
52 |
|
dvdsaddr |
⊢ ( ( 2 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 2 ∥ 𝐾 ↔ 2 ∥ ( 𝐾 + 2 ) ) ) |
53 |
26 18 52
|
sylancr |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 2 ∥ 𝐾 ↔ 2 ∥ ( 𝐾 + 2 ) ) ) |
54 |
3
|
breq2i |
⊢ ( 2 ∥ ( 𝐾 + 2 ) ↔ 2 ∥ 𝑀 ) |
55 |
53 54
|
bitrdi |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 2 ∥ 𝐾 ↔ 2 ∥ 𝑀 ) ) |
56 |
19 55
|
mtbid |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ¬ 2 ∥ 𝑀 ) |
57 |
1
|
ex |
⊢ ( ¬ 2 ∥ 𝑀 → ( 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) ) |
58 |
56 57
|
syl |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) ) |
59 |
51 58
|
sylbid |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑥 ∈ ( ℤ≥ ‘ ( ( 𝐾 + 1 ) + 1 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) ) |
60 |
40 59
|
jaod |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑥 = ( 𝐾 + 1 ) ∨ 𝑥 ∈ ( ℤ≥ ‘ ( ( 𝐾 + 1 ) + 1 ) ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) ) |
61 |
13 60
|
syl5 |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑥 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) ) |
62 |
|
uzp1 |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑥 = 𝐾 ∨ 𝑥 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) ) |
63 |
62
|
adantl |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑥 = 𝐾 ∨ 𝑥 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) ) |
64 |
12 61 63
|
mpjaod |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |