| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmlem0.1 | ⊢ ( ( ¬  2  ∥  𝑀  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝑥  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝑥 ↑ 2 )  ≤  𝑁 )  →  ¬  𝑥  ∥  𝑁 ) ) | 
						
							| 2 |  | prmlem0.2 | ⊢ ( 𝐾  ∈  ℙ  →  ¬  𝐾  ∥  𝑁 ) | 
						
							| 3 |  | prmlem0.3 | ⊢ ( 𝐾  +  2 )  =  𝑀 | 
						
							| 4 |  | eldifi | ⊢ ( 𝑥  ∈  ( ℙ  ∖  { 2 } )  →  𝑥  ∈  ℙ ) | 
						
							| 5 |  | eleq1 | ⊢ ( 𝑥  =  𝐾  →  ( 𝑥  ∈  ℙ  ↔  𝐾  ∈  ℙ ) ) | 
						
							| 6 |  | breq1 | ⊢ ( 𝑥  =  𝐾  →  ( 𝑥  ∥  𝑁  ↔  𝐾  ∥  𝑁 ) ) | 
						
							| 7 | 6 | notbid | ⊢ ( 𝑥  =  𝐾  →  ( ¬  𝑥  ∥  𝑁  ↔  ¬  𝐾  ∥  𝑁 ) ) | 
						
							| 8 | 5 7 | imbi12d | ⊢ ( 𝑥  =  𝐾  →  ( ( 𝑥  ∈  ℙ  →  ¬  𝑥  ∥  𝑁 )  ↔  ( 𝐾  ∈  ℙ  →  ¬  𝐾  ∥  𝑁 ) ) ) | 
						
							| 9 | 2 8 | mpbiri | ⊢ ( 𝑥  =  𝐾  →  ( 𝑥  ∈  ℙ  →  ¬  𝑥  ∥  𝑁 ) ) | 
						
							| 10 | 4 9 | syl5 | ⊢ ( 𝑥  =  𝐾  →  ( 𝑥  ∈  ( ℙ  ∖  { 2 } )  →  ¬  𝑥  ∥  𝑁 ) ) | 
						
							| 11 | 10 | adantrd | ⊢ ( 𝑥  =  𝐾  →  ( ( 𝑥  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝑥 ↑ 2 )  ≤  𝑁 )  →  ¬  𝑥  ∥  𝑁 ) ) | 
						
							| 12 | 11 | a1i | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑥  =  𝐾  →  ( ( 𝑥  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝑥 ↑ 2 )  ≤  𝑁 )  →  ¬  𝑥  ∥  𝑁 ) ) ) | 
						
							| 13 |  | uzp1 | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ ( 𝐾  +  1 ) )  →  ( 𝑥  =  ( 𝐾  +  1 )  ∨  𝑥  ∈  ( ℤ≥ ‘ ( ( 𝐾  +  1 )  +  1 ) ) ) ) | 
						
							| 14 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝐾  +  1 )  →  ( 𝑥  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝐾  +  1 )  ∈  ( ℙ  ∖  { 2 } ) ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  ∧  𝑥  =  ( 𝐾  +  1 ) )  →  ( 𝑥  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝐾  +  1 )  ∈  ( ℙ  ∖  { 2 } ) ) ) | 
						
							| 16 |  | eldifsn | ⊢ ( ( 𝐾  +  1 )  ∈  ( ℙ  ∖  { 2 } )  ↔  ( ( 𝐾  +  1 )  ∈  ℙ  ∧  ( 𝐾  +  1 )  ≠  2 ) ) | 
						
							| 17 |  | eluzel2 | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 𝐾 )  →  𝐾  ∈  ℤ ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  𝐾  ∈  ℤ ) | 
						
							| 19 |  | simpl | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ¬  2  ∥  𝐾 ) | 
						
							| 20 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 21 |  | n2dvds1 | ⊢ ¬  2  ∥  1 | 
						
							| 22 |  | opoe | ⊢ ( ( ( 𝐾  ∈  ℤ  ∧  ¬  2  ∥  𝐾 )  ∧  ( 1  ∈  ℤ  ∧  ¬  2  ∥  1 ) )  →  2  ∥  ( 𝐾  +  1 ) ) | 
						
							| 23 | 20 21 22 | mpanr12 | ⊢ ( ( 𝐾  ∈  ℤ  ∧  ¬  2  ∥  𝐾 )  →  2  ∥  ( 𝐾  +  1 ) ) | 
						
							| 24 | 18 19 23 | syl2anc | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  2  ∥  ( 𝐾  +  1 ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  ∧  ( 𝐾  +  1 )  ∈  ℙ )  →  2  ∥  ( 𝐾  +  1 ) ) | 
						
							| 26 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 27 |  | uzid | ⊢ ( 2  ∈  ℤ  →  2  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 28 | 26 27 | mp1i | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  2  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 29 |  | dvdsprm | ⊢ ( ( 2  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝐾  +  1 )  ∈  ℙ )  →  ( 2  ∥  ( 𝐾  +  1 )  ↔  2  =  ( 𝐾  +  1 ) ) ) | 
						
							| 30 | 28 29 | sylan | ⊢ ( ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  ∧  ( 𝐾  +  1 )  ∈  ℙ )  →  ( 2  ∥  ( 𝐾  +  1 )  ↔  2  =  ( 𝐾  +  1 ) ) ) | 
						
							| 31 | 25 30 | mpbid | ⊢ ( ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  ∧  ( 𝐾  +  1 )  ∈  ℙ )  →  2  =  ( 𝐾  +  1 ) ) | 
						
							| 32 | 31 | eqcomd | ⊢ ( ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  ∧  ( 𝐾  +  1 )  ∈  ℙ )  →  ( 𝐾  +  1 )  =  2 ) | 
						
							| 33 | 32 | a1d | ⊢ ( ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  ∧  ( 𝐾  +  1 )  ∈  ℙ )  →  ( 𝑥  ∥  𝑁  →  ( 𝐾  +  1 )  =  2 ) ) | 
						
							| 34 | 33 | necon3ad | ⊢ ( ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  ∧  ( 𝐾  +  1 )  ∈  ℙ )  →  ( ( 𝐾  +  1 )  ≠  2  →  ¬  𝑥  ∥  𝑁 ) ) | 
						
							| 35 | 34 | expimpd | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( ( ( 𝐾  +  1 )  ∈  ℙ  ∧  ( 𝐾  +  1 )  ≠  2 )  →  ¬  𝑥  ∥  𝑁 ) ) | 
						
							| 36 | 16 35 | biimtrid | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( ( 𝐾  +  1 )  ∈  ( ℙ  ∖  { 2 } )  →  ¬  𝑥  ∥  𝑁 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  ∧  𝑥  =  ( 𝐾  +  1 ) )  →  ( ( 𝐾  +  1 )  ∈  ( ℙ  ∖  { 2 } )  →  ¬  𝑥  ∥  𝑁 ) ) | 
						
							| 38 | 15 37 | sylbid | ⊢ ( ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  ∧  𝑥  =  ( 𝐾  +  1 ) )  →  ( 𝑥  ∈  ( ℙ  ∖  { 2 } )  →  ¬  𝑥  ∥  𝑁 ) ) | 
						
							| 39 | 38 | adantrd | ⊢ ( ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  ∧  𝑥  =  ( 𝐾  +  1 ) )  →  ( ( 𝑥  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝑥 ↑ 2 )  ≤  𝑁 )  →  ¬  𝑥  ∥  𝑁 ) ) | 
						
							| 40 | 39 | ex | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑥  =  ( 𝐾  +  1 )  →  ( ( 𝑥  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝑥 ↑ 2 )  ≤  𝑁 )  →  ¬  𝑥  ∥  𝑁 ) ) ) | 
						
							| 41 | 18 | zcnd | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  𝐾  ∈  ℂ ) | 
						
							| 42 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 43 |  | addass | ⊢ ( ( 𝐾  ∈  ℂ  ∧  1  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝐾  +  1 )  +  1 )  =  ( 𝐾  +  ( 1  +  1 ) ) ) | 
						
							| 44 | 42 42 43 | mp3an23 | ⊢ ( 𝐾  ∈  ℂ  →  ( ( 𝐾  +  1 )  +  1 )  =  ( 𝐾  +  ( 1  +  1 ) ) ) | 
						
							| 45 | 41 44 | syl | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( ( 𝐾  +  1 )  +  1 )  =  ( 𝐾  +  ( 1  +  1 ) ) ) | 
						
							| 46 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 47 | 46 | oveq2i | ⊢ ( 𝐾  +  ( 1  +  1 ) )  =  ( 𝐾  +  2 ) | 
						
							| 48 | 47 3 | eqtri | ⊢ ( 𝐾  +  ( 1  +  1 ) )  =  𝑀 | 
						
							| 49 | 45 48 | eqtrdi | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( ( 𝐾  +  1 )  +  1 )  =  𝑀 ) | 
						
							| 50 | 49 | fveq2d | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( ℤ≥ ‘ ( ( 𝐾  +  1 )  +  1 ) )  =  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 51 | 50 | eleq2d | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑥  ∈  ( ℤ≥ ‘ ( ( 𝐾  +  1 )  +  1 ) )  ↔  𝑥  ∈  ( ℤ≥ ‘ 𝑀 ) ) ) | 
						
							| 52 |  | dvdsaddr | ⊢ ( ( 2  ∈  ℤ  ∧  𝐾  ∈  ℤ )  →  ( 2  ∥  𝐾  ↔  2  ∥  ( 𝐾  +  2 ) ) ) | 
						
							| 53 | 26 18 52 | sylancr | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 2  ∥  𝐾  ↔  2  ∥  ( 𝐾  +  2 ) ) ) | 
						
							| 54 | 3 | breq2i | ⊢ ( 2  ∥  ( 𝐾  +  2 )  ↔  2  ∥  𝑀 ) | 
						
							| 55 | 53 54 | bitrdi | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 2  ∥  𝐾  ↔  2  ∥  𝑀 ) ) | 
						
							| 56 | 19 55 | mtbid | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ¬  2  ∥  𝑀 ) | 
						
							| 57 | 1 | ex | ⊢ ( ¬  2  ∥  𝑀  →  ( 𝑥  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑥  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝑥 ↑ 2 )  ≤  𝑁 )  →  ¬  𝑥  ∥  𝑁 ) ) ) | 
						
							| 58 | 56 57 | syl | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑥  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑥  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝑥 ↑ 2 )  ≤  𝑁 )  →  ¬  𝑥  ∥  𝑁 ) ) ) | 
						
							| 59 | 51 58 | sylbid | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑥  ∈  ( ℤ≥ ‘ ( ( 𝐾  +  1 )  +  1 ) )  →  ( ( 𝑥  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝑥 ↑ 2 )  ≤  𝑁 )  →  ¬  𝑥  ∥  𝑁 ) ) ) | 
						
							| 60 | 40 59 | jaod | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( ( 𝑥  =  ( 𝐾  +  1 )  ∨  𝑥  ∈  ( ℤ≥ ‘ ( ( 𝐾  +  1 )  +  1 ) ) )  →  ( ( 𝑥  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝑥 ↑ 2 )  ≤  𝑁 )  →  ¬  𝑥  ∥  𝑁 ) ) ) | 
						
							| 61 | 13 60 | syl5 | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑥  ∈  ( ℤ≥ ‘ ( 𝐾  +  1 ) )  →  ( ( 𝑥  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝑥 ↑ 2 )  ≤  𝑁 )  →  ¬  𝑥  ∥  𝑁 ) ) ) | 
						
							| 62 |  | uzp1 | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 𝐾 )  →  ( 𝑥  =  𝐾  ∨  𝑥  ∈  ( ℤ≥ ‘ ( 𝐾  +  1 ) ) ) ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑥  =  𝐾  ∨  𝑥  ∈  ( ℤ≥ ‘ ( 𝐾  +  1 ) ) ) ) | 
						
							| 64 | 12 61 63 | mpjaod | ⊢ ( ( ¬  2  ∥  𝐾  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( ( 𝑥  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝑥 ↑ 2 )  ≤  𝑁 )  →  ¬  𝑥  ∥  𝑁 ) ) |