| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmlem1.n | ⊢ 𝑁  ∈  ℕ | 
						
							| 2 |  | prmlem1.gt | ⊢ 1  <  𝑁 | 
						
							| 3 |  | prmlem1.2 | ⊢ ¬  2  ∥  𝑁 | 
						
							| 4 |  | prmlem1.3 | ⊢ ¬  3  ∥  𝑁 | 
						
							| 5 |  | prmlem1.lt | ⊢ 𝑁  <  ; 2 5 | 
						
							| 6 |  | eluzelre | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 5 )  →  𝑥  ∈  ℝ ) | 
						
							| 7 | 6 | resqcld | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 5 )  →  ( 𝑥 ↑ 2 )  ∈  ℝ ) | 
						
							| 8 |  | eluzle | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 5 )  →  5  ≤  𝑥 ) | 
						
							| 9 |  | 5re | ⊢ 5  ∈  ℝ | 
						
							| 10 |  | 5nn0 | ⊢ 5  ∈  ℕ0 | 
						
							| 11 | 10 | nn0ge0i | ⊢ 0  ≤  5 | 
						
							| 12 |  | le2sq2 | ⊢ ( ( ( 5  ∈  ℝ  ∧  0  ≤  5 )  ∧  ( 𝑥  ∈  ℝ  ∧  5  ≤  𝑥 ) )  →  ( 5 ↑ 2 )  ≤  ( 𝑥 ↑ 2 ) ) | 
						
							| 13 | 9 11 12 | mpanl12 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  5  ≤  𝑥 )  →  ( 5 ↑ 2 )  ≤  ( 𝑥 ↑ 2 ) ) | 
						
							| 14 | 6 8 13 | syl2anc | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 5 )  →  ( 5 ↑ 2 )  ≤  ( 𝑥 ↑ 2 ) ) | 
						
							| 15 | 1 | nnrei | ⊢ 𝑁  ∈  ℝ | 
						
							| 16 | 9 | resqcli | ⊢ ( 5 ↑ 2 )  ∈  ℝ | 
						
							| 17 |  | 5cn | ⊢ 5  ∈  ℂ | 
						
							| 18 | 17 | sqvali | ⊢ ( 5 ↑ 2 )  =  ( 5  ·  5 ) | 
						
							| 19 |  | 5t5e25 | ⊢ ( 5  ·  5 )  =  ; 2 5 | 
						
							| 20 | 18 19 | eqtri | ⊢ ( 5 ↑ 2 )  =  ; 2 5 | 
						
							| 21 | 5 20 | breqtrri | ⊢ 𝑁  <  ( 5 ↑ 2 ) | 
						
							| 22 |  | ltletr | ⊢ ( ( 𝑁  ∈  ℝ  ∧  ( 5 ↑ 2 )  ∈  ℝ  ∧  ( 𝑥 ↑ 2 )  ∈  ℝ )  →  ( ( 𝑁  <  ( 5 ↑ 2 )  ∧  ( 5 ↑ 2 )  ≤  ( 𝑥 ↑ 2 ) )  →  𝑁  <  ( 𝑥 ↑ 2 ) ) ) | 
						
							| 23 | 21 22 | mpani | ⊢ ( ( 𝑁  ∈  ℝ  ∧  ( 5 ↑ 2 )  ∈  ℝ  ∧  ( 𝑥 ↑ 2 )  ∈  ℝ )  →  ( ( 5 ↑ 2 )  ≤  ( 𝑥 ↑ 2 )  →  𝑁  <  ( 𝑥 ↑ 2 ) ) ) | 
						
							| 24 | 15 16 23 | mp3an12 | ⊢ ( ( 𝑥 ↑ 2 )  ∈  ℝ  →  ( ( 5 ↑ 2 )  ≤  ( 𝑥 ↑ 2 )  →  𝑁  <  ( 𝑥 ↑ 2 ) ) ) | 
						
							| 25 | 7 14 24 | sylc | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 5 )  →  𝑁  <  ( 𝑥 ↑ 2 ) ) | 
						
							| 26 |  | ltnle | ⊢ ( ( 𝑁  ∈  ℝ  ∧  ( 𝑥 ↑ 2 )  ∈  ℝ )  →  ( 𝑁  <  ( 𝑥 ↑ 2 )  ↔  ¬  ( 𝑥 ↑ 2 )  ≤  𝑁 ) ) | 
						
							| 27 | 15 7 26 | sylancr | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 5 )  →  ( 𝑁  <  ( 𝑥 ↑ 2 )  ↔  ¬  ( 𝑥 ↑ 2 )  ≤  𝑁 ) ) | 
						
							| 28 | 25 27 | mpbid | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 5 )  →  ¬  ( 𝑥 ↑ 2 )  ≤  𝑁 ) | 
						
							| 29 | 28 | pm2.21d | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 5 )  →  ( ( 𝑥 ↑ 2 )  ≤  𝑁  →  ¬  𝑥  ∥  𝑁 ) ) | 
						
							| 30 | 29 | adantld | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 5 )  →  ( ( 𝑥  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝑥 ↑ 2 )  ≤  𝑁 )  →  ¬  𝑥  ∥  𝑁 ) ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( ¬  2  ∥  5  ∧  𝑥  ∈  ( ℤ≥ ‘ 5 ) )  →  ( ( 𝑥  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝑥 ↑ 2 )  ≤  𝑁 )  →  ¬  𝑥  ∥  𝑁 ) ) | 
						
							| 32 | 1 2 3 4 31 | prmlem1a | ⊢ 𝑁  ∈  ℙ |