Step |
Hyp |
Ref |
Expression |
1 |
|
prmlem1.n |
⊢ 𝑁 ∈ ℕ |
2 |
|
prmlem1.gt |
⊢ 1 < 𝑁 |
3 |
|
prmlem1.2 |
⊢ ¬ 2 ∥ 𝑁 |
4 |
|
prmlem1.3 |
⊢ ¬ 3 ∥ 𝑁 |
5 |
|
prmlem1.lt |
⊢ 𝑁 < ; 2 5 |
6 |
|
eluzelre |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → 𝑥 ∈ ℝ ) |
7 |
6
|
resqcld |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → ( 𝑥 ↑ 2 ) ∈ ℝ ) |
8 |
|
eluzle |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → 5 ≤ 𝑥 ) |
9 |
|
5re |
⊢ 5 ∈ ℝ |
10 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
11 |
10
|
nn0ge0i |
⊢ 0 ≤ 5 |
12 |
|
le2sq2 |
⊢ ( ( ( 5 ∈ ℝ ∧ 0 ≤ 5 ) ∧ ( 𝑥 ∈ ℝ ∧ 5 ≤ 𝑥 ) ) → ( 5 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) ) |
13 |
9 11 12
|
mpanl12 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 5 ≤ 𝑥 ) → ( 5 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) ) |
14 |
6 8 13
|
syl2anc |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → ( 5 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) ) |
15 |
1
|
nnrei |
⊢ 𝑁 ∈ ℝ |
16 |
9
|
resqcli |
⊢ ( 5 ↑ 2 ) ∈ ℝ |
17 |
|
5cn |
⊢ 5 ∈ ℂ |
18 |
17
|
sqvali |
⊢ ( 5 ↑ 2 ) = ( 5 · 5 ) |
19 |
|
5t5e25 |
⊢ ( 5 · 5 ) = ; 2 5 |
20 |
18 19
|
eqtri |
⊢ ( 5 ↑ 2 ) = ; 2 5 |
21 |
5 20
|
breqtrri |
⊢ 𝑁 < ( 5 ↑ 2 ) |
22 |
|
ltletr |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 5 ↑ 2 ) ∈ ℝ ∧ ( 𝑥 ↑ 2 ) ∈ ℝ ) → ( ( 𝑁 < ( 5 ↑ 2 ) ∧ ( 5 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) ) → 𝑁 < ( 𝑥 ↑ 2 ) ) ) |
23 |
21 22
|
mpani |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 5 ↑ 2 ) ∈ ℝ ∧ ( 𝑥 ↑ 2 ) ∈ ℝ ) → ( ( 5 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) → 𝑁 < ( 𝑥 ↑ 2 ) ) ) |
24 |
15 16 23
|
mp3an12 |
⊢ ( ( 𝑥 ↑ 2 ) ∈ ℝ → ( ( 5 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) → 𝑁 < ( 𝑥 ↑ 2 ) ) ) |
25 |
7 14 24
|
sylc |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → 𝑁 < ( 𝑥 ↑ 2 ) ) |
26 |
|
ltnle |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑥 ↑ 2 ) ∈ ℝ ) → ( 𝑁 < ( 𝑥 ↑ 2 ) ↔ ¬ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) ) |
27 |
15 7 26
|
sylancr |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → ( 𝑁 < ( 𝑥 ↑ 2 ) ↔ ¬ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) ) |
28 |
25 27
|
mpbid |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → ¬ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) |
29 |
28
|
pm2.21d |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁 ) ) |
30 |
29
|
adantld |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
31 |
30
|
adantl |
⊢ ( ( ¬ 2 ∥ 5 ∧ 𝑥 ∈ ( ℤ≥ ‘ 5 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
32 |
1 2 3 4 31
|
prmlem1a |
⊢ 𝑁 ∈ ℙ |