Step |
Hyp |
Ref |
Expression |
1 |
|
prmlem1.n |
⊢ 𝑁 ∈ ℕ |
2 |
|
prmlem1.gt |
⊢ 1 < 𝑁 |
3 |
|
prmlem1.2 |
⊢ ¬ 2 ∥ 𝑁 |
4 |
|
prmlem1.3 |
⊢ ¬ 3 ∥ 𝑁 |
5 |
|
prmlem1a.x |
⊢ ( ( ¬ 2 ∥ 5 ∧ 𝑥 ∈ ( ℤ≥ ‘ 5 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
6 |
|
eluz2b2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |
7 |
1 2 6
|
mpbir2an |
⊢ 𝑁 ∈ ( ℤ≥ ‘ 2 ) |
8 |
|
breq1 |
⊢ ( 𝑥 = 2 → ( 𝑥 ∥ 𝑁 ↔ 2 ∥ 𝑁 ) ) |
9 |
8
|
notbid |
⊢ ( 𝑥 = 2 → ( ¬ 𝑥 ∥ 𝑁 ↔ ¬ 2 ∥ 𝑁 ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑥 = 2 → ( ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁 ) ↔ ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 2 ∥ 𝑁 ) ) ) |
11 |
|
prmnn |
⊢ ( 𝑥 ∈ ℙ → 𝑥 ∈ ℕ ) |
12 |
11
|
adantr |
⊢ ( ( 𝑥 ∈ ℙ ∧ 𝑥 ≠ 2 ) → 𝑥 ∈ ℕ ) |
13 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑥 ∈ ℙ ∧ 𝑥 ≠ 2 ) ) |
14 |
|
n2dvds1 |
⊢ ¬ 2 ∥ 1 |
15 |
4
|
a1i |
⊢ ( 3 ∈ ℙ → ¬ 3 ∥ 𝑁 ) |
16 |
|
3p2e5 |
⊢ ( 3 + 2 ) = 5 |
17 |
5 15 16
|
prmlem0 |
⊢ ( ( ¬ 2 ∥ 3 ∧ 𝑥 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
18 |
|
1nprm |
⊢ ¬ 1 ∈ ℙ |
19 |
18
|
pm2.21i |
⊢ ( 1 ∈ ℙ → ¬ 1 ∥ 𝑁 ) |
20 |
|
1p2e3 |
⊢ ( 1 + 2 ) = 3 |
21 |
17 19 20
|
prmlem0 |
⊢ ( ( ¬ 2 ∥ 1 ∧ 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
22 |
14 21
|
mpan |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
23 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
24 |
22 23
|
eleq2s |
⊢ ( 𝑥 ∈ ℕ → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
25 |
24
|
expd |
⊢ ( 𝑥 ∈ ℕ → ( 𝑥 ∈ ( ℙ ∖ { 2 } ) → ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁 ) ) ) |
26 |
13 25
|
syl5bir |
⊢ ( 𝑥 ∈ ℕ → ( ( 𝑥 ∈ ℙ ∧ 𝑥 ≠ 2 ) → ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁 ) ) ) |
27 |
12 26
|
mpcom |
⊢ ( ( 𝑥 ∈ ℙ ∧ 𝑥 ≠ 2 ) → ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁 ) ) |
28 |
3
|
2a1i |
⊢ ( 𝑥 ∈ ℙ → ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 2 ∥ 𝑁 ) ) |
29 |
10 27 28
|
pm2.61ne |
⊢ ( 𝑥 ∈ ℙ → ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁 ) ) |
30 |
29
|
rgen |
⊢ ∀ 𝑥 ∈ ℙ ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁 ) |
31 |
|
isprm5 |
⊢ ( 𝑁 ∈ ℙ ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℙ ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁 ) ) ) |
32 |
7 30 31
|
mpbir2an |
⊢ 𝑁 ∈ ℙ |