Description: Our last proving session got as far as 25 because we started with the two "bootstrap" primes 2 and 3, and the next prime is 5, so knowing that 2 and 3 are prime and 4 is not allows us to cover the numbers less than 5 ^ 2 = 2 5 . Additionally, nonprimes are "easy", so we can extend this range of known prime/nonprimes all the way until 29, which is the first prime larger than 25. Thus, in this lemma we extend another blanket out to 2 9 ^ 2 = 8 4 1 , from which we can prove even more primes. If we wanted, we could keep doing this, but the goal is Bertrand's postulate, and for that we only need a few large primes - we don't need to find them all, as we have been doing thus far. So after this blanket runs out, we'll have to switch to another method (see 1259prm ).
As a side note, you can see the pattern of the primes in the indentation pattern of this lemma! (Contributed by Mario Carneiro, 18-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prmlem2.n | ⊢ 𝑁 ∈ ℕ | |
prmlem2.lt | ⊢ 𝑁 < ; ; 8 4 1 | ||
prmlem2.gt | ⊢ 1 < 𝑁 | ||
prmlem2.2 | ⊢ ¬ 2 ∥ 𝑁 | ||
prmlem2.3 | ⊢ ¬ 3 ∥ 𝑁 | ||
prmlem2.5 | ⊢ ¬ 5 ∥ 𝑁 | ||
prmlem2.7 | ⊢ ¬ 7 ∥ 𝑁 | ||
prmlem2.11 | ⊢ ¬ ; 1 1 ∥ 𝑁 | ||
prmlem2.13 | ⊢ ¬ ; 1 3 ∥ 𝑁 | ||
prmlem2.17 | ⊢ ¬ ; 1 7 ∥ 𝑁 | ||
prmlem2.19 | ⊢ ¬ ; 1 9 ∥ 𝑁 | ||
prmlem2.23 | ⊢ ¬ ; 2 3 ∥ 𝑁 | ||
Assertion | prmlem2 | ⊢ 𝑁 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmlem2.n | ⊢ 𝑁 ∈ ℕ | |
2 | prmlem2.lt | ⊢ 𝑁 < ; ; 8 4 1 | |
3 | prmlem2.gt | ⊢ 1 < 𝑁 | |
4 | prmlem2.2 | ⊢ ¬ 2 ∥ 𝑁 | |
5 | prmlem2.3 | ⊢ ¬ 3 ∥ 𝑁 | |
6 | prmlem2.5 | ⊢ ¬ 5 ∥ 𝑁 | |
7 | prmlem2.7 | ⊢ ¬ 7 ∥ 𝑁 | |
8 | prmlem2.11 | ⊢ ¬ ; 1 1 ∥ 𝑁 | |
9 | prmlem2.13 | ⊢ ¬ ; 1 3 ∥ 𝑁 | |
10 | prmlem2.17 | ⊢ ¬ ; 1 7 ∥ 𝑁 | |
11 | prmlem2.19 | ⊢ ¬ ; 1 9 ∥ 𝑁 | |
12 | prmlem2.23 | ⊢ ¬ ; 2 3 ∥ 𝑁 | |
13 | eluzelre | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ ; 2 9 ) → 𝑥 ∈ ℝ ) | |
14 | 13 | resqcld | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ ; 2 9 ) → ( 𝑥 ↑ 2 ) ∈ ℝ ) |
15 | eluzle | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ ; 2 9 ) → ; 2 9 ≤ 𝑥 ) | |
16 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
17 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
18 | 16 17 | deccl | ⊢ ; 2 9 ∈ ℕ0 |
19 | 18 | nn0rei | ⊢ ; 2 9 ∈ ℝ |
20 | 18 | nn0ge0i | ⊢ 0 ≤ ; 2 9 |
21 | le2sq2 | ⊢ ( ( ( ; 2 9 ∈ ℝ ∧ 0 ≤ ; 2 9 ) ∧ ( 𝑥 ∈ ℝ ∧ ; 2 9 ≤ 𝑥 ) ) → ( ; 2 9 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) ) | |
22 | 19 20 21 | mpanl12 | ⊢ ( ( 𝑥 ∈ ℝ ∧ ; 2 9 ≤ 𝑥 ) → ( ; 2 9 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) ) |
23 | 13 15 22 | syl2anc | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ ; 2 9 ) → ( ; 2 9 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) ) |
24 | 1 | nnrei | ⊢ 𝑁 ∈ ℝ |
25 | 19 | resqcli | ⊢ ( ; 2 9 ↑ 2 ) ∈ ℝ |
26 | 18 | nn0cni | ⊢ ; 2 9 ∈ ℂ |
27 | 26 | sqvali | ⊢ ( ; 2 9 ↑ 2 ) = ( ; 2 9 · ; 2 9 ) |
28 | eqid | ⊢ ; 2 9 = ; 2 9 | |
29 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
30 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
31 | 16 30 | deccl | ⊢ ; 2 6 ∈ ℕ0 |
32 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
33 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
34 | 26 | 2timesi | ⊢ ( 2 · ; 2 9 ) = ( ; 2 9 + ; 2 9 ) |
35 | 2p2e4 | ⊢ ( 2 + 2 ) = 4 | |
36 | 35 | oveq1i | ⊢ ( ( 2 + 2 ) + 1 ) = ( 4 + 1 ) |
37 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
38 | 36 37 | eqtri | ⊢ ( ( 2 + 2 ) + 1 ) = 5 |
39 | 9p9e18 | ⊢ ( 9 + 9 ) = ; 1 8 | |
40 | 16 17 16 17 28 28 38 33 39 | decaddc | ⊢ ( ; 2 9 + ; 2 9 ) = ; 5 8 |
41 | 34 40 | eqtri | ⊢ ( 2 · ; 2 9 ) = ; 5 8 |
42 | eqid | ⊢ ; 2 6 = ; 2 6 | |
43 | 5p2e7 | ⊢ ( 5 + 2 ) = 7 | |
44 | 43 | oveq1i | ⊢ ( ( 5 + 2 ) + 1 ) = ( 7 + 1 ) |
45 | 7p1e8 | ⊢ ( 7 + 1 ) = 8 | |
46 | 44 45 | eqtri | ⊢ ( ( 5 + 2 ) + 1 ) = 8 |
47 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
48 | 8p6e14 | ⊢ ( 8 + 6 ) = ; 1 4 | |
49 | 32 33 16 30 41 42 46 47 48 | decaddc | ⊢ ( ( 2 · ; 2 9 ) + ; 2 6 ) = ; 8 4 |
50 | 9t2e18 | ⊢ ( 9 · 2 ) = ; 1 8 | |
51 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
52 | 8p8e16 | ⊢ ( 8 + 8 ) = ; 1 6 | |
53 | 29 33 33 50 51 30 52 | decaddci | ⊢ ( ( 9 · 2 ) + 8 ) = ; 2 6 |
54 | 9t9e81 | ⊢ ( 9 · 9 ) = ; 8 1 | |
55 | 17 16 17 28 29 33 53 54 | decmul2c | ⊢ ( 9 · ; 2 9 ) = ; ; 2 6 1 |
56 | 18 16 17 28 29 31 49 55 | decmul1c | ⊢ ( ; 2 9 · ; 2 9 ) = ; ; 8 4 1 |
57 | 27 56 | eqtri | ⊢ ( ; 2 9 ↑ 2 ) = ; ; 8 4 1 |
58 | 2 57 | breqtrri | ⊢ 𝑁 < ( ; 2 9 ↑ 2 ) |
59 | ltletr | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( ; 2 9 ↑ 2 ) ∈ ℝ ∧ ( 𝑥 ↑ 2 ) ∈ ℝ ) → ( ( 𝑁 < ( ; 2 9 ↑ 2 ) ∧ ( ; 2 9 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) ) → 𝑁 < ( 𝑥 ↑ 2 ) ) ) | |
60 | 58 59 | mpani | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( ; 2 9 ↑ 2 ) ∈ ℝ ∧ ( 𝑥 ↑ 2 ) ∈ ℝ ) → ( ( ; 2 9 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) → 𝑁 < ( 𝑥 ↑ 2 ) ) ) |
61 | 24 25 60 | mp3an12 | ⊢ ( ( 𝑥 ↑ 2 ) ∈ ℝ → ( ( ; 2 9 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) → 𝑁 < ( 𝑥 ↑ 2 ) ) ) |
62 | 14 23 61 | sylc | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ ; 2 9 ) → 𝑁 < ( 𝑥 ↑ 2 ) ) |
63 | ltnle | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑥 ↑ 2 ) ∈ ℝ ) → ( 𝑁 < ( 𝑥 ↑ 2 ) ↔ ¬ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) ) | |
64 | 24 14 63 | sylancr | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ ; 2 9 ) → ( 𝑁 < ( 𝑥 ↑ 2 ) ↔ ¬ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) ) |
65 | 62 64 | mpbid | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ ; 2 9 ) → ¬ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) |
66 | 65 | pm2.21d | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ ; 2 9 ) → ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁 ) ) |
67 | 66 | adantld | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ ; 2 9 ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
68 | 67 | adantl | ⊢ ( ( ¬ 2 ∥ ; 2 9 ∧ 𝑥 ∈ ( ℤ≥ ‘ ; 2 9 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
69 | 9nn | ⊢ 9 ∈ ℕ | |
70 | 3nn | ⊢ 3 ∈ ℕ | |
71 | 1lt9 | ⊢ 1 < 9 | |
72 | 1lt3 | ⊢ 1 < 3 | |
73 | 9t3e27 | ⊢ ( 9 · 3 ) = ; 2 7 | |
74 | 69 70 71 72 73 | nprmi | ⊢ ¬ ; 2 7 ∈ ℙ |
75 | 74 | pm2.21i | ⊢ ( ; 2 7 ∈ ℙ → ¬ ; 2 7 ∥ 𝑁 ) |
76 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
77 | eqid | ⊢ ; 2 7 = ; 2 7 | |
78 | 7p2e9 | ⊢ ( 7 + 2 ) = 9 | |
79 | 16 76 16 77 78 | decaddi | ⊢ ( ; 2 7 + 2 ) = ; 2 9 |
80 | 68 75 79 | prmlem0 | ⊢ ( ( ¬ 2 ∥ ; 2 7 ∧ 𝑥 ∈ ( ℤ≥ ‘ ; 2 7 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
81 | 5nn | ⊢ 5 ∈ ℕ | |
82 | 1lt5 | ⊢ 1 < 5 | |
83 | 5t5e25 | ⊢ ( 5 · 5 ) = ; 2 5 | |
84 | 81 81 82 82 83 | nprmi | ⊢ ¬ ; 2 5 ∈ ℙ |
85 | 84 | pm2.21i | ⊢ ( ; 2 5 ∈ ℙ → ¬ ; 2 5 ∥ 𝑁 ) |
86 | eqid | ⊢ ; 2 5 = ; 2 5 | |
87 | 16 32 16 86 43 | decaddi | ⊢ ( ; 2 5 + 2 ) = ; 2 7 |
88 | 80 85 87 | prmlem0 | ⊢ ( ( ¬ 2 ∥ ; 2 5 ∧ 𝑥 ∈ ( ℤ≥ ‘ ; 2 5 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
89 | 12 | a1i | ⊢ ( ; 2 3 ∈ ℙ → ¬ ; 2 3 ∥ 𝑁 ) |
90 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
91 | eqid | ⊢ ; 2 3 = ; 2 3 | |
92 | 3p2e5 | ⊢ ( 3 + 2 ) = 5 | |
93 | 16 90 16 91 92 | decaddi | ⊢ ( ; 2 3 + 2 ) = ; 2 5 |
94 | 88 89 93 | prmlem0 | ⊢ ( ( ¬ 2 ∥ ; 2 3 ∧ 𝑥 ∈ ( ℤ≥ ‘ ; 2 3 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
95 | 7nn | ⊢ 7 ∈ ℕ | |
96 | 1lt7 | ⊢ 1 < 7 | |
97 | 7t3e21 | ⊢ ( 7 · 3 ) = ; 2 1 | |
98 | 95 70 96 72 97 | nprmi | ⊢ ¬ ; 2 1 ∈ ℙ |
99 | 98 | pm2.21i | ⊢ ( ; 2 1 ∈ ℙ → ¬ ; 2 1 ∥ 𝑁 ) |
100 | eqid | ⊢ ; 2 1 = ; 2 1 | |
101 | 1p2e3 | ⊢ ( 1 + 2 ) = 3 | |
102 | 16 29 16 100 101 | decaddi | ⊢ ( ; 2 1 + 2 ) = ; 2 3 |
103 | 94 99 102 | prmlem0 | ⊢ ( ( ¬ 2 ∥ ; 2 1 ∧ 𝑥 ∈ ( ℤ≥ ‘ ; 2 1 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
104 | 11 | a1i | ⊢ ( ; 1 9 ∈ ℙ → ¬ ; 1 9 ∥ 𝑁 ) |
105 | eqid | ⊢ ; 1 9 = ; 1 9 | |
106 | 9p2e11 | ⊢ ( 9 + 2 ) = ; 1 1 | |
107 | 29 17 16 105 51 29 106 | decaddci | ⊢ ( ; 1 9 + 2 ) = ; 2 1 |
108 | 103 104 107 | prmlem0 | ⊢ ( ( ¬ 2 ∥ ; 1 9 ∧ 𝑥 ∈ ( ℤ≥ ‘ ; 1 9 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
109 | 10 | a1i | ⊢ ( ; 1 7 ∈ ℙ → ¬ ; 1 7 ∥ 𝑁 ) |
110 | eqid | ⊢ ; 1 7 = ; 1 7 | |
111 | 29 76 16 110 78 | decaddi | ⊢ ( ; 1 7 + 2 ) = ; 1 9 |
112 | 108 109 111 | prmlem0 | ⊢ ( ( ¬ 2 ∥ ; 1 7 ∧ 𝑥 ∈ ( ℤ≥ ‘ ; 1 7 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
113 | 5t3e15 | ⊢ ( 5 · 3 ) = ; 1 5 | |
114 | 81 70 82 72 113 | nprmi | ⊢ ¬ ; 1 5 ∈ ℙ |
115 | 114 | pm2.21i | ⊢ ( ; 1 5 ∈ ℙ → ¬ ; 1 5 ∥ 𝑁 ) |
116 | eqid | ⊢ ; 1 5 = ; 1 5 | |
117 | 29 32 16 116 43 | decaddi | ⊢ ( ; 1 5 + 2 ) = ; 1 7 |
118 | 112 115 117 | prmlem0 | ⊢ ( ( ¬ 2 ∥ ; 1 5 ∧ 𝑥 ∈ ( ℤ≥ ‘ ; 1 5 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
119 | 9 | a1i | ⊢ ( ; 1 3 ∈ ℙ → ¬ ; 1 3 ∥ 𝑁 ) |
120 | eqid | ⊢ ; 1 3 = ; 1 3 | |
121 | 29 90 16 120 92 | decaddi | ⊢ ( ; 1 3 + 2 ) = ; 1 5 |
122 | 118 119 121 | prmlem0 | ⊢ ( ( ¬ 2 ∥ ; 1 3 ∧ 𝑥 ∈ ( ℤ≥ ‘ ; 1 3 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
123 | 8 | a1i | ⊢ ( ; 1 1 ∈ ℙ → ¬ ; 1 1 ∥ 𝑁 ) |
124 | eqid | ⊢ ; 1 1 = ; 1 1 | |
125 | 29 29 16 124 101 | decaddi | ⊢ ( ; 1 1 + 2 ) = ; 1 3 |
126 | 122 123 125 | prmlem0 | ⊢ ( ( ¬ 2 ∥ ; 1 1 ∧ 𝑥 ∈ ( ℤ≥ ‘ ; 1 1 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
127 | 9nprm | ⊢ ¬ 9 ∈ ℙ | |
128 | 127 | pm2.21i | ⊢ ( 9 ∈ ℙ → ¬ 9 ∥ 𝑁 ) |
129 | 126 128 106 | prmlem0 | ⊢ ( ( ¬ 2 ∥ 9 ∧ 𝑥 ∈ ( ℤ≥ ‘ 9 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
130 | 7 | a1i | ⊢ ( 7 ∈ ℙ → ¬ 7 ∥ 𝑁 ) |
131 | 129 130 78 | prmlem0 | ⊢ ( ( ¬ 2 ∥ 7 ∧ 𝑥 ∈ ( ℤ≥ ‘ 7 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
132 | 6 | a1i | ⊢ ( 5 ∈ ℙ → ¬ 5 ∥ 𝑁 ) |
133 | 131 132 43 | prmlem0 | ⊢ ( ( ¬ 2 ∥ 5 ∧ 𝑥 ∈ ( ℤ≥ ‘ 5 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
134 | 1 3 4 5 133 | prmlem1a | ⊢ 𝑁 ∈ ℙ |