Step |
Hyp |
Ref |
Expression |
1 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
2 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
3 |
2
|
nnred |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ ) |
4 |
|
ltnle |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( 𝑁 < 𝑃 ↔ ¬ 𝑃 ≤ 𝑁 ) ) |
5 |
1 3 4
|
syl2anr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < 𝑃 ↔ ¬ 𝑃 ≤ 𝑁 ) ) |
6 |
|
prmfac1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( ! ‘ 𝑁 ) ) → 𝑃 ≤ 𝑁 ) |
7 |
6
|
3exp |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( ! ‘ 𝑁 ) → 𝑃 ≤ 𝑁 ) ) ) |
8 |
7
|
impcom |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 ∥ ( ! ‘ 𝑁 ) → 𝑃 ≤ 𝑁 ) ) |
9 |
8
|
con3d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( ¬ 𝑃 ≤ 𝑁 → ¬ 𝑃 ∥ ( ! ‘ 𝑁 ) ) ) |
10 |
5 9
|
sylbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < 𝑃 → ¬ 𝑃 ∥ ( ! ‘ 𝑁 ) ) ) |