Metamath Proof Explorer


Theorem prmndvdsfaclt

Description: A prime number does not divide the factorial of a nonnegative integer less than the prime number. (Contributed by AV, 13-Jul-2021)

Ref Expression
Assertion prmndvdsfaclt ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < 𝑃 → ¬ 𝑃 ∥ ( ! ‘ 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 nn0re ( 𝑁 ∈ ℕ0𝑁 ∈ ℝ )
2 prmnn ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ )
3 2 nnred ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ )
4 ltnle ( ( 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( 𝑁 < 𝑃 ↔ ¬ 𝑃𝑁 ) )
5 1 3 4 syl2anr ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < 𝑃 ↔ ¬ 𝑃𝑁 ) )
6 prmfac1 ( ( 𝑁 ∈ ℕ0𝑃 ∈ ℙ ∧ 𝑃 ∥ ( ! ‘ 𝑁 ) ) → 𝑃𝑁 )
7 6 3exp ( 𝑁 ∈ ℕ0 → ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( ! ‘ 𝑁 ) → 𝑃𝑁 ) ) )
8 7 impcom ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 ∥ ( ! ‘ 𝑁 ) → 𝑃𝑁 ) )
9 8 con3d ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( ¬ 𝑃𝑁 → ¬ 𝑃 ∥ ( ! ‘ 𝑁 ) ) )
10 5 9 sylbid ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < 𝑃 → ¬ 𝑃 ∥ ( ! ‘ 𝑁 ) ) )