| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 2 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 3 | 2 | nnred | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℝ ) | 
						
							| 4 |  | ltnle | ⊢ ( ( 𝑁  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( 𝑁  <  𝑃  ↔  ¬  𝑃  ≤  𝑁 ) ) | 
						
							| 5 | 1 3 4 | syl2anr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  <  𝑃  ↔  ¬  𝑃  ≤  𝑁 ) ) | 
						
							| 6 |  | prmfac1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( ! ‘ 𝑁 ) )  →  𝑃  ≤  𝑁 ) | 
						
							| 7 | 6 | 3exp | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  ∥  ( ! ‘ 𝑁 )  →  𝑃  ≤  𝑁 ) ) ) | 
						
							| 8 | 7 | impcom | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑃  ∥  ( ! ‘ 𝑁 )  →  𝑃  ≤  𝑁 ) ) | 
						
							| 9 | 8 | con3d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  →  ( ¬  𝑃  ≤  𝑁  →  ¬  𝑃  ∥  ( ! ‘ 𝑁 ) ) ) | 
						
							| 10 | 5 9 | sylbid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  <  𝑃  →  ¬  𝑃  ∥  ( ! ‘ 𝑁 ) ) ) |