Metamath Proof Explorer


Theorem prmo0

Description: The primorial of 0. (Contributed by AV, 28-Aug-2020)

Ref Expression
Assertion prmo0 ( #p ‘ 0 ) = 1

Proof

Step Hyp Ref Expression
1 0nn0 0 ∈ ℕ0
2 prmoval ( 0 ∈ ℕ0 → ( #p ‘ 0 ) = ∏ 𝑘 ∈ ( 1 ... 0 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) )
3 1 2 ax-mp ( #p ‘ 0 ) = ∏ 𝑘 ∈ ( 1 ... 0 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 )
4 fz10 ( 1 ... 0 ) = ∅
5 4 prodeq1i 𝑘 ∈ ( 1 ... 0 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = ∏ 𝑘 ∈ ∅ if ( 𝑘 ∈ ℙ , 𝑘 , 1 )
6 prod0 𝑘 ∈ ∅ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 1
7 3 5 6 3eqtri ( #p ‘ 0 ) = 1