Step |
Hyp |
Ref |
Expression |
1 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
2 |
|
prmoval |
⊢ ( 1 ∈ ℕ0 → ( #p ‘ 1 ) = ∏ 𝑘 ∈ ( 1 ... 1 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
3 |
1 2
|
ax-mp |
⊢ ( #p ‘ 1 ) = ∏ 𝑘 ∈ ( 1 ... 1 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) |
4 |
|
1z |
⊢ 1 ∈ ℤ |
5 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
6 |
|
1nprm |
⊢ ¬ 1 ∈ ℙ |
7 |
|
eleq1 |
⊢ ( 𝑘 = 1 → ( 𝑘 ∈ ℙ ↔ 1 ∈ ℙ ) ) |
8 |
6 7
|
mtbiri |
⊢ ( 𝑘 = 1 → ¬ 𝑘 ∈ ℙ ) |
9 |
8
|
iffalsed |
⊢ ( 𝑘 = 1 → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 1 ) |
10 |
9
|
fprod1 |
⊢ ( ( 1 ∈ ℤ ∧ 1 ∈ ℂ ) → ∏ 𝑘 ∈ ( 1 ... 1 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 1 ) |
11 |
4 5 10
|
mp2an |
⊢ ∏ 𝑘 ∈ ( 1 ... 1 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 1 |
12 |
3 11
|
eqtri |
⊢ ( #p ‘ 1 ) = 1 |