| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 2 |  | prmonn2 | ⊢ ( 2  ∈  ℕ  →  ( #p ‘ 2 )  =  if ( 2  ∈  ℙ ,  ( ( #p ‘ ( 2  −  1 ) )  ·  2 ) ,  ( #p ‘ ( 2  −  1 ) ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( #p ‘ 2 )  =  if ( 2  ∈  ℙ ,  ( ( #p ‘ ( 2  −  1 ) )  ·  2 ) ,  ( #p ‘ ( 2  −  1 ) ) ) | 
						
							| 4 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 5 | 4 | iftruei | ⊢ if ( 2  ∈  ℙ ,  ( ( #p ‘ ( 2  −  1 ) )  ·  2 ) ,  ( #p ‘ ( 2  −  1 ) ) )  =  ( ( #p ‘ ( 2  −  1 ) )  ·  2 ) | 
						
							| 6 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 7 | 6 | fveq2i | ⊢ ( #p ‘ ( 2  −  1 ) )  =  ( #p ‘ 1 ) | 
						
							| 8 |  | prmo1 | ⊢ ( #p ‘ 1 )  =  1 | 
						
							| 9 | 7 8 | eqtri | ⊢ ( #p ‘ ( 2  −  1 ) )  =  1 | 
						
							| 10 | 9 | oveq1i | ⊢ ( ( #p ‘ ( 2  −  1 ) )  ·  2 )  =  ( 1  ·  2 ) | 
						
							| 11 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 12 | 11 | mullidi | ⊢ ( 1  ·  2 )  =  2 | 
						
							| 13 | 10 12 | eqtri | ⊢ ( ( #p ‘ ( 2  −  1 ) )  ·  2 )  =  2 | 
						
							| 14 | 5 13 | eqtri | ⊢ if ( 2  ∈  ℙ ,  ( ( #p ‘ ( 2  −  1 ) )  ·  2 ) ,  ( #p ‘ ( 2  −  1 ) ) )  =  2 | 
						
							| 15 | 3 14 | eqtri | ⊢ ( #p ‘ 2 )  =  2 |