Step |
Hyp |
Ref |
Expression |
1 |
|
2nn |
⊢ 2 ∈ ℕ |
2 |
|
prmonn2 |
⊢ ( 2 ∈ ℕ → ( #p ‘ 2 ) = if ( 2 ∈ ℙ , ( ( #p ‘ ( 2 − 1 ) ) · 2 ) , ( #p ‘ ( 2 − 1 ) ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( #p ‘ 2 ) = if ( 2 ∈ ℙ , ( ( #p ‘ ( 2 − 1 ) ) · 2 ) , ( #p ‘ ( 2 − 1 ) ) ) |
4 |
|
2prm |
⊢ 2 ∈ ℙ |
5 |
4
|
iftruei |
⊢ if ( 2 ∈ ℙ , ( ( #p ‘ ( 2 − 1 ) ) · 2 ) , ( #p ‘ ( 2 − 1 ) ) ) = ( ( #p ‘ ( 2 − 1 ) ) · 2 ) |
6 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
7 |
6
|
fveq2i |
⊢ ( #p ‘ ( 2 − 1 ) ) = ( #p ‘ 1 ) |
8 |
|
prmo1 |
⊢ ( #p ‘ 1 ) = 1 |
9 |
7 8
|
eqtri |
⊢ ( #p ‘ ( 2 − 1 ) ) = 1 |
10 |
9
|
oveq1i |
⊢ ( ( #p ‘ ( 2 − 1 ) ) · 2 ) = ( 1 · 2 ) |
11 |
|
2cn |
⊢ 2 ∈ ℂ |
12 |
11
|
mulid2i |
⊢ ( 1 · 2 ) = 2 |
13 |
10 12
|
eqtri |
⊢ ( ( #p ‘ ( 2 − 1 ) ) · 2 ) = 2 |
14 |
5 13
|
eqtri |
⊢ if ( 2 ∈ ℙ , ( ( #p ‘ ( 2 − 1 ) ) · 2 ) , ( #p ‘ ( 2 − 1 ) ) ) = 2 |
15 |
3 14
|
eqtri |
⊢ ( #p ‘ 2 ) = 2 |