Metamath Proof Explorer


Theorem prmo2

Description: The primorial of 2. (Contributed by AV, 28-Aug-2020)

Ref Expression
Assertion prmo2 ( #p ‘ 2 ) = 2

Proof

Step Hyp Ref Expression
1 2nn 2 ∈ ℕ
2 prmonn2 ( 2 ∈ ℕ → ( #p ‘ 2 ) = if ( 2 ∈ ℙ , ( ( #p ‘ ( 2 − 1 ) ) · 2 ) , ( #p ‘ ( 2 − 1 ) ) ) )
3 1 2 ax-mp ( #p ‘ 2 ) = if ( 2 ∈ ℙ , ( ( #p ‘ ( 2 − 1 ) ) · 2 ) , ( #p ‘ ( 2 − 1 ) ) )
4 2prm 2 ∈ ℙ
5 4 iftruei if ( 2 ∈ ℙ , ( ( #p ‘ ( 2 − 1 ) ) · 2 ) , ( #p ‘ ( 2 − 1 ) ) ) = ( ( #p ‘ ( 2 − 1 ) ) · 2 )
6 2m1e1 ( 2 − 1 ) = 1
7 6 fveq2i ( #p ‘ ( 2 − 1 ) ) = ( #p ‘ 1 )
8 prmo1 ( #p ‘ 1 ) = 1
9 7 8 eqtri ( #p ‘ ( 2 − 1 ) ) = 1
10 9 oveq1i ( ( #p ‘ ( 2 − 1 ) ) · 2 ) = ( 1 · 2 )
11 2cn 2 ∈ ℂ
12 11 mulid2i ( 1 · 2 ) = 2
13 10 12 eqtri ( ( #p ‘ ( 2 − 1 ) ) · 2 ) = 2
14 5 13 eqtri if ( 2 ∈ ℙ , ( ( #p ‘ ( 2 − 1 ) ) · 2 ) , ( #p ‘ ( 2 − 1 ) ) ) = 2
15 3 14 eqtri ( #p ‘ 2 ) = 2