| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 2 |  | prmonn2 | ⊢ ( 3  ∈  ℕ  →  ( #p ‘ 3 )  =  if ( 3  ∈  ℙ ,  ( ( #p ‘ ( 3  −  1 ) )  ·  3 ) ,  ( #p ‘ ( 3  −  1 ) ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( #p ‘ 3 )  =  if ( 3  ∈  ℙ ,  ( ( #p ‘ ( 3  −  1 ) )  ·  3 ) ,  ( #p ‘ ( 3  −  1 ) ) ) | 
						
							| 4 |  | 3prm | ⊢ 3  ∈  ℙ | 
						
							| 5 | 4 | iftruei | ⊢ if ( 3  ∈  ℙ ,  ( ( #p ‘ ( 3  −  1 ) )  ·  3 ) ,  ( #p ‘ ( 3  −  1 ) ) )  =  ( ( #p ‘ ( 3  −  1 ) )  ·  3 ) | 
						
							| 6 |  | 3m1e2 | ⊢ ( 3  −  1 )  =  2 | 
						
							| 7 | 6 | fveq2i | ⊢ ( #p ‘ ( 3  −  1 ) )  =  ( #p ‘ 2 ) | 
						
							| 8 |  | prmo2 | ⊢ ( #p ‘ 2 )  =  2 | 
						
							| 9 | 7 8 | eqtri | ⊢ ( #p ‘ ( 3  −  1 ) )  =  2 | 
						
							| 10 | 9 | oveq1i | ⊢ ( ( #p ‘ ( 3  −  1 ) )  ·  3 )  =  ( 2  ·  3 ) | 
						
							| 11 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 12 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 13 |  | 3t2e6 | ⊢ ( 3  ·  2 )  =  6 | 
						
							| 14 | 11 12 13 | mulcomli | ⊢ ( 2  ·  3 )  =  6 | 
						
							| 15 | 10 14 | eqtri | ⊢ ( ( #p ‘ ( 3  −  1 ) )  ·  3 )  =  6 | 
						
							| 16 | 5 15 | eqtri | ⊢ if ( 3  ∈  ℙ ,  ( ( #p ‘ ( 3  −  1 ) )  ·  3 ) ,  ( #p ‘ ( 3  −  1 ) ) )  =  6 | 
						
							| 17 | 3 16 | eqtri | ⊢ ( #p ‘ 3 )  =  6 |